Uniform coating of TiO2 thin films on particles by rotating cylindrical PCVD reactor.

J Nanosci Nanotechnol

Department of Chemical Engineering, Kangwon National University, Chuncheon, Kangwon-Do 200-701, Republic of Korea.

Published: July 2009

AI Article Synopsis

Article Abstract

We analyzed TiO2 thin film growth on glass particles in a rotating cylindrical plasma chemical vapor deposition (PCVD) reactor and numerically investigated the effects of several process variables on the film growth. An increase in titanium tetra-isopropoxide (TTIP) or O2 partial pressure can enhance the film growth rate on the particles because the concentration of TiO(x), which is the main precursor for thin film growth, becomes higher in the reactor. As the particle diameter decreases, the TiO(x) concentration increases and the thin film on the particles grows more quickly. The neutral-radical reaction between TTIP and O radicals for TiO(x) generation in TTIP + O2 plasmas can be important to enhance the thin film growth rate on the particles. The growth rate of TiO2 film predicted in this study was 1 approximately 20 nm/min, which is in good agreement with the published experimental results. This study suggests that a uniform TiO2 thin film on particles can be obtained by using a rotating cylindrical PCVD reactor.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2009.m47DOI Listing

Publication Analysis

Top Keywords

thin film
20
film growth
20
tio2 thin
12
particles rotating
12
rotating cylindrical
12
pcvd reactor
12
growth rate
12
cylindrical pcvd
8
film
8
rate particles
8

Similar Publications

We investigate the effect of focused-ion-beam (FIB) irradiation on spin waves with sub-micron wavelengths in Yttrium-Iron-Garnet (YIG) films. Time-resolved scanning transmission X-ray (TR-STXM) microscopy was used to image the spin waves in irradiated regions and deduce corresponding changes in the magnetic parameters of the film. We find that the changes of Gairradiation can be understood by assuming a few percent change in the effective magnetizationof the film due to a trade-off between changes in anisotropy and effective film thickness.

View Article and Find Full Text PDF

The textile industry is one of the main industries that benefited from the industrial revolution. Therefore, discharging of dyes from textile, paper, plastic, and rubber industries is inevitable. This colored wastewater prevents sunlight penetration and highly affects water sources.

View Article and Find Full Text PDF

Membranes of Polymer of Intrinsic Microporosity PIM-1 for Gas Separation: Modification Strategies and Meta-Analysis.

Nanomicro Lett

January 2025

Department of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK.

Polymers of intrinsic microporosity (PIMs) have received considerable attention for making high-performance membranes for carbon dioxide separation over the last two decades, owing to their highly permeable porous structures. However, challenges regarding its relatively low selectivity, physical aging, and plasticisation impede relevant industrial adoptions for gas separation. To address these issues, several strategies including chain modification, post-modification, blending with other polymers, and the addition of fillers, have been developed and explored.

View Article and Find Full Text PDF

Manganese oxides are a promising cathode material for aqueous zinc-ion batteries (AZIBs), but thin-film configurations remain underexplored. This study investigates the electrochemical dynamics of 60 nm thin MnO thin films, fabricated via RF magnetron reactive sputtering. It addresses the highest reported capacity (25 mAh/g) in thin film form, stability over 500 cycles, effective performance across varying current rates, surpassing previous studies and challenges such as phase stability, and capacity fading over extended cycling, aiming to enhance uniformity, minimizing diffusion barriers for improved performance.

View Article and Find Full Text PDF

Miniaturization of next-generation active neural implants requires novel micro-packaging solutions that can maintain their long-term coating performance in the body. This work presents two thin-film coatings and evaluates their biostability and in vivo performance over a 7-month animal study. To evaluate the coatings on representative surfaces, two silicon microchips with different surface microtopography are used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!