Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815901PMC
http://dx.doi.org/10.1104/pp.109.149583DOI Listing

Publication Analysis

Top Keywords

bioinformatic systems
4
systems biology
4
biology tools
4
tools generate
4
generate testable
4
testable models
4
models signaling
4
signaling pathways
4
pathways targets
4
bioinformatic
1

Similar Publications

Metabolic abnormalities associated with liver disease have a significant impact on the risk and prognosis of cholecystitis. However, the underlying mechanism remains to be elucidated. Here, we investigated this issue using Wilson's disease (WD) as a model, which is a genetic disorder characterized by impaired mitochondrial function and copper metabolism.

View Article and Find Full Text PDF

Social mates dynamically coordinate aggressive behavior to produce strategic territorial defense.

PLoS Comput Biol

January 2025

Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, United States of America.

Negotiating social dynamics among allies and enemies is a complex problem that often requires individuals to tailor their behavioral approach to a specific situation based on environmental and/or social factors. One way to make these contextual adjustments is by arranging behavioral output into intentional patterns. Yet, few studies explore how behavioral patterns vary across a wide range of contexts, or how allies might interlace their behavior to produce a coordinated response.

View Article and Find Full Text PDF

The "similarity of dissimilarities" is an emerging paradigm in biomedical science with significant implications for protein function prediction, machine learning (ML), and personalized medicine. In protein function prediction, recognizing dissimilarities alongside similarities provides a more detailed understanding of evolutionary processes, allowing for a deeper exploration of regions that influence biological functionality. For ML models, incorporating dissimilarity measures helps avoid misleading results caused by highly correlated or similar data, addressing confounding issues like the Doppelgänger Effect.

View Article and Find Full Text PDF

Vistla: identifying influence paths with information theory.

Bioinformatics

January 2025

Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, 02-106, Poland.

Motivation: It is a challenging task to decipher the mechanisms of a complex system from observational data; especially in biology, where systems are sophisticated, measurements coarse and multi-modality is a common trait. The typical approaches of inferring a network of relationships between system's components struggle with the quality and feasibility of estimation, as well as with the interpretability of the results they yield.Said issues can be avoided, however, when dealing with a simpler problem of tracking only the influence paths, defined as circuits relying the information of an experimental perturbation as it spreads through the system.

View Article and Find Full Text PDF

Leveraging Structural and Computational Biology for Molecular Glue Discovery.

J Med Chem

January 2025

Experimental Drug Development Centre, Chromos, Agency for Science, Technology and Research, 10 Biopolis Road, #05-01, Singapore 138670.

The discovery of molecular glues has made significant strides, unlocking new avenues for targeted protein degradation as a therapeutic strategy, thereby expanding the scope of drug discovery into territories previously considered undruggable. Pioneering molecules like thalidomide and its derivatives have paved the way for the development of small molecules that can induce specific protein degradation by hijacking the cellular ubiquitin-proteasome system. Recent advancements have focused on expanding the range of E3 ligases and target proteins that can be modulated by molecular glues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!