The identification and optimization of a series of substituted tetrahydro-beta-carbolines with potent activity against human papillomavirus is described. Structure-activity studies focused on the substitution pattern and chirality of the beta-carboline ring system are discussed. Optimization of these parameters led to compounds with antiviral activities in the low nanomolar range.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2009.10.123 | DOI Listing |
J Am Chem Soc
October 2024
Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
Chiral tetrahydro-β-carbolines, as one of the most intriguing subtypes of indole alkaloids, have emerged as the privileged units in plenty of natural products and biologically active molecules with an impressive range of bioactive properties. However, the stereodivergent construction of these valuable skeletons containing multistereogenic centers from readily available starting materials remains very challenging, especially, in view of the introduction of an axial chirality. Herein, we developed an efficient method toward enantioenriched tetrahydro-β-carbolines with readily available tryptophan-derived aldimine esters and allylic carbonates under mild reaction conditions.
View Article and Find Full Text PDFRSC Adv
September 2024
Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka Dhaka-1000 Bangladesh
The 2,3,4,9-tetrahydro-1-pyrido[3,4-]indoles or tetrahydro-β-carbolines (THβCs) are tricyclic compounds that are found in various natural sources that exhibit a wide range of important pharmacological activities. Chiral 1-substituted-THβCs, which have an asymmetric center at C1, have attained significant interest due to their possible Monoamine Oxidase (MAO) inhibitory activity, benzodiazepine receptor binding activity, and antimalarial effectiveness against chloroquine-resistant . This review highlights and summarizes various novel stereoselective approaches to introduce chirality at the C1 position of 1-substituted-THβCs in good yield and enantiomeric excess (ee) or diastereomeric excess (de).
View Article and Find Full Text PDFChem Biol Drug Des
April 2024
Pharmacy College Saifai, Uttar Pradesh University of Medical Sciences, Etawah, Uttar Pradesh, India.
β-Carboline nucleus is therapeutically valuable in medicinal chemistry for the treatment of varied number of diseases, most importantly cancer. The potent and wide-ranging activity of β-carboline has established them as imperative pharmacological scaffolds especially in the cancer treatment. Numerous derivatives such as Tetrahydro β-carbolines, metal complexed β-carbolines, mono, di and tri substituted β-carbolines have been reported to possess dynamic anticancer activity.
View Article and Find Full Text PDFPhotochem Photobiol Sci
October 2023
Institute of Chemistry, Technology and Metallurgy, University of Belgrade, National Institute of the Republic of Serbia, Njegoševa 12, 11000, Belgrade, Republic of Serbia.
Visible light promoted photoredox catalyzed formation of α-amino radicals from cyclic tertiary amine compounds and their subsequent addition to Michael acceptors performed in flow conditions allowed access to a wide range of functionalized N-aryl-substituted tetrahydroisoquinolines (THIQs) and N-aryl-substituted tetrahydro-β-carbolines (THBCs). Visible light in conjunction with Ru(bpy)Cl photocatalyst allowed the formation and high reactivities of α-amino radicals in flow conditions at room temperature. These reactions gave valuable products with high efficiencies; some previously unavailable reaction pathways photo or thermal reaction conditions; i.
View Article and Find Full Text PDFMol Divers
June 2024
Center for Drug Research, Universiti Sains Malaysia, 11800, George Town, Pulau Penang, Malaysia.
Manipulating intracellular signals by interaction with transmembranal G-protein-coupled receptors (GPCRs) is the way of action of more than 30% of available medicines. Designing molecules against GPCRs is most challenging due to their flexible binding orthosteric and allosteric pockets, a property that lead to different mode and extent of activation of intracellular mediators. Here, in the current study we aimed to design N-substituted tetrahydro-beta-carbolines (THβC's) targeting Mu Opioid Receptors (MORs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!