Synthesis and antiprotozoal activity of 4-arylcoumarins.

Eur J Med Chem

Faculté des Sciences de Saint-Jérôme, UMR-CNRS 6264, Laboratoire Chimie Provence, Universités Aix-Marseille I, II and III, 13397 Marseille Cedex 20, France.

Published: March 2010

A large series of 4-arylcoumarins was synthesized by Suzuki-Miyaura cross-coupling reaction and evaluated for antiprotozoal activity against Plasmodium falciparum and Leishmania donovani. Several compounds were found to strongly inhibit the proliferation of human cell line and/or parasites. The 4-(3,4-dimethoxyphenyl)-6,7-dimethoxycoumarin exhibit a potent activity on L. donovani amastigotes with a selectivity index (SI=265) twice than amphotericin B (SI=140).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2009.10.022DOI Listing

Publication Analysis

Top Keywords

antiprotozoal activity
8
synthesis antiprotozoal
4
activity 4-arylcoumarins
4
4-arylcoumarins large
4
large series
4
series 4-arylcoumarins
4
4-arylcoumarins synthesized
4
synthesized suzuki-miyaura
4
suzuki-miyaura cross-coupling
4
cross-coupling reaction
4

Similar Publications

Background: Acute lung injury (ALI) is a severe condition with multifaceted causes, including inflammation and oxidative stress. This research investigates the influence of m6A (N6-methyladenosine) modification on GBP4, a protein pivotal for macrophage polarization, a critical immune response in ALI.

Methods: Utilizing a mouse model to induce ALI, the study analyzed GBP4 expression in alveolar macrophages.

View Article and Find Full Text PDF

Background: Amiodarone, a common antiarrhythmic drug, is known for its severe side effects, including pulmonary toxicity, which involves oxidative stress and apoptosis. Artemisinin, an antimalarial drug, has shown cytoprotective properties by inhibiting oxidative stress and apoptosis. This study investigated the protective effects of artemisinin against amiodarone-induced toxicity in human bronchial epithelial cells (BEAS-2B) and mouse models.

View Article and Find Full Text PDF

This study aims to study how gold nanoparticles (AuNPs) function in the recruitment and polarization of tumor-associated macrophages (TAMs) in hormone-sensitive prostate cancer (HSPC) and castration-resistant prostate cancer (CRPC). Phorbol ester (PMA)-treated THP-1 cells were cocultured with LNCaP or PC3 cells to simulate TAMs. Macrophage M2 polarization levels were detected using flow cytometry and M2 marker determination.

View Article and Find Full Text PDF

N6-methyladenosine RNA modification regulates the transcription of SLC7A11 through KDM6B and GATA3 to modulate ferroptosis.

J Biomed Sci

January 2025

Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.

Background: Recent studies indicate that N6-methyladenosine (mA) RNA modification may regulate ferroptosis in cancer cells, while its molecular mechanisms require further investigation.

Methods: Liquid Chromatography-Tandem Mass Spectrometry (HPLC/MS/MS) was used to detect changes in mA levels in cells. Transmission electron microscopy and flow cytometry were used to detect mitochondrial reactive oxygen species (ROS).

View Article and Find Full Text PDF

Ikarugamycin is a member of the natural product family of the polycyclic tetramate macrolactams (PoTeMs). The compound exhibits a diverse range of biological activities, including antimicrobial, antiprotozoal, anti-leukemic, and anti-inflammatory properties. In addition, it interferes with several crucial cellular functions, such as oxidized low-density lipoprotein uptake in macrophages, Nef-induced CD4 cell surface downregulation, and mechanisms of endocytosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!