Extracellular Mg(2+) regulates the tight junctional localization of claudin-16 mediated by ERK-dependent phosphorylation.

Biochim Biophys Acta

Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.

Published: March 2010

Claudin-16 is involved in the paracellular reabsorption of Mg(2+) in the thick ascending limb of Henle. Little is known about the mechanism regulating the tight junctional localization of claudin-16. Here, we examined the effect of Mg(2+) deprivation on the distribution and function of claudin-16 using Madin-Darby canine kidney (MDCK) cells expressing FLAG-tagged claudin-16. Mg(2+) deprivation inhibited the localization of claudin-16 at tight junctions, but did not affect the localization of other claudins. Re-addition of Mg(2+) induced the tight junctional localization of claudin-16, which was inhibited by U0126, a MEK inhibitor. Transepithelial permeability to Mg(2+) was also inhibited by U0126. The phosphorylation of ERK was reduced by Mg(2+) deprivation, and recovered by re-addition of Mg(2+). These results suggest that the MEK/ERK-dependent phosphorylation of claudin-16 affects the tight junctional localization and function of claudin-16. Mg(2+) deprivation decreased the phosphothreonine levels of claudin-16. The phosphothreonine levels of T225A and T233A claudin-16 were decreased in the presence of Mg(2+) and these mutants were widely distributed in the plasma membrane. Furthermore, TER and transepithelial Mg(2+) permeability were decreased in the mutants. We suggest that the tight junctional localization of claudin-16 requires a physiological Mg(2+) concentration and the phosphorylation of threonine residues via a MEK/ERK-dependent pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2009.11.005DOI Listing

Publication Analysis

Top Keywords

tight junctional
20
junctional localization
20
localization claudin-16
20
mg2+ deprivation
16
claudin-16
12
mg2+
11
phosphorylation claudin-16
8
function claudin-16
8
claudin-16 mg2+
8
claudin-16 tight
8

Similar Publications

Translocation across barriers and through constrictions is a mechanism that is often used in vivo for transporting material between compartments. A specific example is apicomplexan parasites invading host cells through the tight junction that acts as a pore, and a similar barrier crossing is involved in drug delivery using lipid vesicles penetrating intact skin. Here, we use triangulated membranes and energy minimization to study the translocation of vesicles through pores with fixed radii.

View Article and Find Full Text PDF

Background: Methylglyoxal (MGO), a highly reactive precursor of advanced glycation end products (AGEs), is endogenously produced and prevalent in various ultra-processed foods. MGO has emerged as a significant precursor implicated in the pathogenesis of type 2 diabetes and neurodegenerative diseases. To date, the effects of dietary MGO on the intestine have been limited explored.

View Article and Find Full Text PDF

Therapeutic Potential of (L.) . Leaf Extract in Modulating Gut Microbiota and Immune Response for the Treatment of Inflammatory Bowel Disease.

Pharmaceuticals (Basel)

January 2025

School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China.

Inflammatory bowel disease (IBD) is a persistent inflammatory condition affecting the gastrointestinal tract, distinguished by the impairment of the intestinal epithelial barrier, dysregulation of the gut microbiota, and abnormal immune responses. (L.) , traditionally used in Chinese herbal medicine for gastrointestinal issues such as bleeding and dysentery, has garnered attention for its potential therapeutic benefits.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is a crucial structure that maintains brain homeostasis by regulating the entry of molecules and cells from the bloodstream into the central nervous system (CNS). Neurodegenerative diseases such as Alzheimer's and Parkinson's disease, as well as ischemic stroke, compromise the integrity of the BBB. This leads to increased permeability and the infiltration of harmful substances, thereby accelerating neurodegeneration.

View Article and Find Full Text PDF

With the growing demand for sheep, the sheep farming industry has developed rapidly. However, lamb diarrhea, a disease with high mortality rates, significantly hampers the industry's growth. Traditional antibiotic treatments often disrupt the Intestinal microbiota, induce antibiotic resistance, and cause adverse side effects, highlighting the urgent need to develop alternative therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!