Dehydrogenase (DH) activity associated with bio-electrochemical behavior was analyzed for the first time to understand the redox reactions involved in fermentative hydrogen (H(2)) production process in concurrence with proton (H(+)) shuttling and electron (e(-)) discharge (ED) pattern. DH facilitates the availability of H(+) through redox reactions to make H(2). We have designed a comprehensive experimental study to evaluate the DH activity (H(+) shuttling) and ED to understand the biochemical process with the function of pH (5, 6, 7 and 8) and metabolic microenvironment [anaerobic, anoxic and aerobic (control)]. DH activity was observed to be higher during anaerobic operation suggesting the higher availability of H(+) and e(-) due to the inter-conversion of metabolites and the same was reflected in the voltammetry analysis. Higher H(2) production under anaerobic operation corroborated well with these findings. The DH activity associated with H(+) shuttling and ED was also correlated with the substrate degradation pattern.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2009.10.026DOI Listing

Publication Analysis

Top Keywords

redox reactions
12
electron discharge
8
discharge pattern
8
fermentative hydrogen
8
hydrogen production
8
activity associated
8
anaerobic operation
8
insight dehydrogenase
4
dehydrogenase catalyzed
4
catalyzed redox
4

Similar Publications

Barley (Hordeum vulgare L.) is an important cereal crop used in animal feed, beer brewing, and food production. Waterlogging stress is one of the prominent abiotic stresses that has a significant impact on the yield and quality of barley.

View Article and Find Full Text PDF

Background: Androgenic anabolic steroids (AASs) are synthetic drugs structurally related to testosterone, with the ability to bind to androgen receptors. Their uncontrolled use by professional and recreational sportspeople is a widespread problem. AAS abuse is correlated with severe damage to the cardiovascular system, including changes in homeostasis and coagulation disorders.

View Article and Find Full Text PDF

Accelerated photooxidation of salicylic acid (SA) was performed using UV radiation and hydrogen peroxide. HPLC-MS analysis showed that the primary intermediates are 2,5-dihydroxybenzoic acid, 2,3-dihydroxybenzoic acid, pyrocatechol, and phenol. Deeper oxidation leads to low molecular weight aliphatic acids, such as maleic, fumaric, and glyoxylic.

View Article and Find Full Text PDF

It is well known that individual pea ( L.) cultivars differ in their symbiotic responsivity. This trait is typically manifested with an increase in seed weights, due to inoculation with rhizobial bacteria and arbuscular mycorrhizal fungi.

View Article and Find Full Text PDF

The unique redox properties of nanoscale cerium dioxide determine its diverse application in biology and medicine as a regulator of oxidative metabolism. Lipid modifiers of the nanoparticle surface change their biochemical properties and bioavailability. Complexes with lipids can be formed upon contact of the nanoparticles with the membrane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!