Adsorption rate dependence on convection over a large length of a sensor to get adsorption constant and solute diffusion coefficient.

Colloids Surf B Biointerfaces

Laboratoire de Dynamique, Interactions et Réactivité, UMR 7075, CNRS, Thiais, France.

Published: March 2010

We propose a representation of initial adsorption kinetic constant as a function of convection in a slit flow cell device, averaged over some restricted length of a wall acting as a sensor. The complete domain from transport-control to surface reaction control is included. The intercepts with axes give access to adsorption constant and solute diffusion coefficient. It is shown that, provided the close entrance is avoided, the function for the restricted length is very close to the function for local values.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2009.10.022DOI Listing

Publication Analysis

Top Keywords

adsorption constant
8
constant solute
8
solute diffusion
8
diffusion coefficient
8
restricted length
8
adsorption
4
adsorption rate
4
rate dependence
4
dependence convection
4
convection large
4

Similar Publications

Environmental pollution, stemming from the disposal of contaminants, poses severe threats to ecosystems and human health. The emergence of a new class of pollutants, termed emerging contaminants (ECs), in soil, water, and air has raised global concerns, aligning with the UN 2030 Agenda's Sustainable Development Goals. Aerogels, three-dimensional structures with high porosity and low density, offer promise in addressing this issue.

View Article and Find Full Text PDF

Low-power gas sensors that can be used in IoT (Internet of Things) systems, consumer devices, and point-of-care devices will enable new applications in environmental monitoring and health protection. We fabricated a monolithic chemiresistive gas sensor by integrating a micro-lightplate with a 2D sensing material composed of single-layer graphene and monolayer-thick TiO. Applying ultraviolet (380 nm) light with quantum energy above the TiO bandgap effectively enhanced the sensor responses.

View Article and Find Full Text PDF

The corrosion of low-alloy steel in ethanolamine solution, simulating steam generator chemistry, is studied by in situ chronopotentiometry and electrochemical impedance spectroscopy combined with ex situ analysis of the obtained oxide films and model calculations. Hydrodynamic calculations of the proposed setup to study flow-assisted corrosion demonstrate that turbulent conditions are achieved. Quantum chemical calculations indicate the adsorption orientation of ethanolamine on the oxide surface.

View Article and Find Full Text PDF

This study investigates the corrosion inhibition effects of eco-friendly conifer cone extract (CCE) on steel rebars embedded in cement mortar exposed to 3.5% NaCl under alternate wet/dry cycles. CCE concentrations of 0, 0.

View Article and Find Full Text PDF

The design and screening of low cost and high efficiency oxygen reduction reaction (ORR) electrocatalysts is vital in the realms of fuel cells and metal-air batteries. Existing studies largely rely on the calculation of absorption free energy, a method established 20 years ago by Jens K. Nørskov.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!