Constructing size distributions of liposomes from single-object fluorescence measurements.

Methods Enzymol

Bio-Nanotechnology Laboratory, Department of Neuroscience and Pharmacology and Nano-Science Center, University of Copenhagen, Copenhagen, Denmark.

Published: February 2010

We describe in detail a simple technique to construct the size distribution of liposome formulations from single-object fluorescence measurements. Liposomes that are fluorescently labeled in their membrane are first immobilized on a surface at dilute densities and then imaged individually using epi-fluorescence microscopy. The integrated intensities of several thousand single liposomes are collected and evaluated within minutes by automated image processing, using the user-friendly freeware ImageJ. The mean intensity of the liposome population is then calculated and scaled in units of length (nm) by relating the intensity data to the mean diameter obtained from a reference measurement with dynamic light scattering. We explain the process of constructing the size distributions in a step-by-step manner, starting with the preparation of liposomes through the final acquisition of size histograms. Detailed advice is given concerning critical parameters of image acquisition and processing. Size histograms constructed from single-particle measurements provide detailed information on complex distributions that may be easily averaged out in ensemble measurements (e.g., light scattering). In addition, the technique allows accurate measurements of polydisperse samples (e.g., nonextruded liposome preparations).

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0076-6879(09)65008-4DOI Listing

Publication Analysis

Top Keywords

constructing size
8
size distributions
8
single-object fluorescence
8
fluorescence measurements
8
light scattering
8
size histograms
8
measurements
5
liposomes
4
distributions liposomes
4
liposomes single-object
4

Similar Publications

Short-term outcomes of mesh-suture repair in the treatment of ventral hernias: a single-center study.

Surg Endosc

January 2025

Division of Minimally Invasive and Bariatric Surgery, Penn State Health Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA, 17033, USA.

Background: Defect closure with mesh suture is a novel technique for hernia repair. Originally described as the construction of lightweight macroporous polypropylene mesh strips as a suture material, it is now available as an FDA-approved product. Mesh suture better distributes tensile forces and reduces fascial tearing compared to traditional suture but requires less implanted material and tissue dissection compared to planar mesh.

View Article and Find Full Text PDF

Aptazyme-directed A-to-I RNA editing.

Methods Enzymol

January 2025

Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, P.R. China. Electronic address:

As a promising therapeutic approach, the RNA editing process can correct pathogenic mutations and is reversible and tunable, without permanently altering the genome. RNA editing mediated by human ADAR proteins offers unique advantages, including high specificity and low immunogenicity. Compared to CRISPR-based gene editing techniques, RNA editing events are temporary, which can reduce the risk of long-term unintended side effects, making off-target edits less concerning than DNA-targeting methods.

View Article and Find Full Text PDF

The inadequate thermal insulation of the building envelope contributes significantly to the high power consumption of air conditioners in houses. A crucial factor in raising a building's energy efficiency involves utilizing bricks with high thermal resistance. This issue is accompanied by another critical challenge: recycling and disposing of waste in a way that is both economically and environmentally beneficial, including using it to fuel industrial growth, in order to reduce the harmful effects of waste on the environment as waste generation in our societies grows.

View Article and Find Full Text PDF

Construction, characterization and application of rutin loaded zein - Carboxymethyl starch sodium nanoparticles.

Int J Biol Macromol

January 2025

School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China. Electronic address:

In this paper, zein-carboxymethyl starch (CMS) nanoparticles were prepared by antisolvent precipitation method to improve the stability of rutin (RT). The encapsulation efficiency, loading capacity, oxidation resistance, structural properties were evaluated. The results showed that electrostatic, hydrogen bond and hydrophobic interaction were the main driving forces for the formation of nanoparticles.

View Article and Find Full Text PDF

Due to health reasons of polyglycerol polyricinoleate (PGPR), there has been a growing interest in reducing it. To address this, this study developed the PGPR/Protein (whey, pea, and chickpea protein isolates) emulsifier combinations. The effects of these combinations on the preparation, structure, physicochemical and in vitro digestive properties of W/O/W microcapsules were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!