There is a need to characterize the epitopes of affinity reagents to develop high quality affinity reagents for research, diagnostics and therapy. Here, we describe the analysis of epitopes of antibodies generated toward human tryptophanyl-tRNA synthetase (WARS) using both combinatorial bacterial display and suspension bead array. The bacterial display revealed that the polyclonal antibody binds to three separate epitopes and peptide scanning using 15-mers revealed binding to a 13 amino acid consensus sequence (ELINRIERATGQR). A mouse monoclonal antibody was generated and the mapping approach revealed binding toward a slightly shifted position of the same epitope. Structural analysis showed that the antibodies bind to alpha-helical regions on the surface of the target protein. An alanine-scanning experiment showed binding to four specific residues. The implications for the systematic analysis of antibody epitopes on the basis of these results are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbt.2009.11.001 | DOI Listing |
Nat Immunol
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
Although antibody escape is observed in emerging severe acute respiratory syndrome coronavirus 2 variants, T cell escape, especially after the global circulation of BA.2.86/JN.
View Article and Find Full Text PDFAm J Trop Med Hyg
January 2025
Centro de Investigaciones Regionales "Dr. Hideyo Noguchi," Universidad Autónoma de Yucatán, Mérida, México.
The socioecological conditions of Mexican regions are conducive to the spread of vector-borne diseases. Although there are established treatment guidelines for dengue and rickettsiosis, diagnosis is complicated. The objective of this work was to identify epitopes of Rickettsia and dengue virus that could be used in serology screening against vector-borne diseases.
View Article and Find Full Text PDFMol Divers
January 2025
Center of Bioinformatics, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China.
Melanoma, a highly aggressive skin cancer, remains a significant cause of mortality despite advancements in therapeutic strategies. There is an urgent demand for developing vaccines that can elicit strong and comprehensive immune responses against this malignancy. Achieving this goal is crucial to enhance the efficacy of immunological defense mechanisms in combating this disease.
View Article and Find Full Text PDFbioRxiv
January 2025
Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
Although emerging data have revealed the critical role of memory CD8 T cells in preventing and controlling SARS-CoV-2 infection, virus-specific CD8 T-cell responses against SARS-CoV-2 and its memory and innate-like subsets in unvaccinated COVID-19 patients with various disease manifestations in an HLA-restricted fashion remain to be understood. Here, we show the strong association of protective cellular immunity with mild COVID-19 and unique cell types against SARS-CoV-2 virus in an HLA-A2 restricted manner. ELISpot assays reveal that SARS-CoV-2-specific CD8 T-cell responses in mild COVID-19 patients are significantly higher than in severe patients, whereas neutralizing antibody responses against SARS-CoV-2 virus significantly correlate with disease severity.
View Article and Find Full Text PDFCancer-associated fibroblasts (CAFs) in the stroma of solid tumors promote an immunosuppressive tumor microenvironment (TME) that drives resistance to therapies. The expression of the protease fibroblast activation protein (FAP) on the surface of CAFs has made FAP a target for development of therapies to dampen immunosuppression. Relatively few biologics have been developed for FAP and none have been developed that exploit the unique engagement properties of Variable New Antigen Receptors (VNARs) from shark antibodies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!