The antidiabetic therapeutic effect of Ecklonia cava, a brown alga, was investigated using streptozotocin-induced type 1 diabetes mellitus rats and C2C12 myoblasts. The methanol extract of E. cava (ECM), having a strong radical scavenging activity, significantly reduced plasma glucose level and increased insulin concentration in type 1 diabetes mellitus rats. Moreover, the elevation of plasma ALT in diabetic rats was dramatically restored near to normal range by the treatment of ECM, whereas AST level was not meaningfully altered in any group throughout the experiment. The characteristic indications of diabetes, such as polyphagia and polydipsia, were greatly improved by ECM treatment as well. The mechanism of action of ECM appears to be, at least partially, mediated by the activation of both AMP-activated protein kinase/ACC and PI-3 kinase/Akt signal pathways. Taken together, the present results suggest that E. cava has both in vivo and in vitro antidiabetic effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fct.2009.11.004 | DOI Listing |
Diabetes
January 2025
Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada.
Cancer survivors have an increased risk of developing Type 2 diabetes compared to the general population. Patients treated with cisplatin, a common chemotherapeutic agent, are more likely to develop metabolic syndrome and Type 2 diabetes than age- and sex-matched controls. Surprisingly, the impact of cisplatin on pancreatic islets has not been reported.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Section of Osteimmunology and Oral Immunology, Laboratory of Dental Reseach. FES Iztacala, National Autonomous University of Mexico (UNAM), México, Mexico State, México.
Unlabelled: LCN2 has an osteokine important for appetite regulation; in type 2 diabetes (T2D) it is not known whether appetite regulation mediated by LCN2 in the brain is altered. In this work, we focus on exploring the role of blocking LCN2 in metabolic health and appetite regulation within the central nervous system of mice with T2D.
Material And Methods: 4-week-old male C57BL/6 mice were used, divided into four experimental groups: intact, T2D, TD2/anti-LCN2, and T2D/IgG as isotype control.
Metab Brain Dis
January 2025
The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541199, Guangxi, China.
Type 2 diabetes (T2D) is an important risk factor for brain cognitive impairment, but the specific mechanism is still unclear. The imbalance of gut microbiota under pathological conditions (such as an increase in pathogenic bacteria) may be involved in the occurrence of various diseases. The purpose of this study is to investigate the effect of increased abundance of gut Citrobacter rodentium on cognitive function in T2D mice.
View Article and Find Full Text PDFCurr Cardiol Rep
January 2025
Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, QC, Canada.
PURPOSE OF REVIEW: Narrative review of the author's main contributions to the field of cardiovascular health spanning four decades, with a focus on findings related to 1- the pathophysiology of obesity, insulin resistance, type 2 diabetes and cardiovascular disease, and 2- the management/prevention of these conditions. Particular attention is given to the importance of regular physical activity. RECENT FINDINGS: Because behaviors and their physiological consequences are still not measured in clinical practice, it is proposed to systematically assess and target "lifestyle vital signs" (waist circumference, cardiorespiratory fitness, food-based diet quality and level of leisure-time physical activity) in primary care.
View Article and Find Full Text PDFDiabetologia
January 2025
Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Aims/hypothesis: Existing evidence on the relationship between intake of monounsaturated fatty acids (MUFAs) and type 2 diabetes is conflicting. Few studies have examined whether MUFAs from plant or animal sources (MUFA-Ps and MUFA-As, respectively) exhibit differential associations with type 2 diabetes. We examined associations of intakes of total MUFAs, MUFA-Ps and MUFA-As with type 2 diabetes risk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!