A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Differential temporal changes in brain and gut substance P mRNA expression throughout the time-course of cisplatin-induced vomiting in the least shrew (Cryptotis parva). | LitMetric

Differential temporal changes in brain and gut substance P mRNA expression throughout the time-course of cisplatin-induced vomiting in the least shrew (Cryptotis parva).

Brain Res

Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA.

Published: January 2010

Cisplatin and related chemotherapeutics are potent emetogens in humans and least shrews, a small animal emesis model which also vomits in response to substance P (SP). The SP-producing preprotachykinin-1 (PPT1) mRNA is transcribed from the Tac1 gene, which has been sequenced from several animal species and humans and is highly conserved. Despite its prominent role in chemotherapy-induced vomiting, the tachykininergic system is not well-characterized in emesis-competent species. This study was undertaken to further establish Cryptotis parva as an emesis model, by sequencing and characterizing SP mRNA, and then comparing the least shrew tachykininergic system to other mammalian species (vomiting and non-vomiting). The cDNA for least shrew beta-PPT1 was successfully cloned and partially sequenced, and found to be 90% homologous to the human sequence, with the SP-producing portion identical to humans. Initial in situ hybridization results demonstrated induction of beta-PPT1 mRNA in the gut following cisplatin administration. These were followed up with mRNA quantification (via QPCR) at multiple time points following cisplatin injection. PPT1 mRNA levels in the brain spiked at 4 h (19-fold increase) and 24 h (20-fold increase) in correlation with cisplatin-induced emesis. PPT1 mRNA in the gut spiked at 28 h (approximately 6.5-fold increase), correlated with the later phase of vomiting. These results validate the least shrew as a tachykinin model at the molecular level.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2009.11.005DOI Listing

Publication Analysis

Top Keywords

ppt1 mrna
12
cryptotis parva
8
emesis model
8
tachykininergic system
8
mrna gut
8
mrna
7
differential temporal
4
temporal changes
4
changes brain
4
brain gut
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!