A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular analysis of T-B-NK+ severe combined immunodeficiency and Omenn syndrome cases in Saudi Arabia. | LitMetric

Background: Children with Severe Combined Immunodeficiency (SCID) lack autologous T lymphocytes and present with multiple infections early in infancy. Omenn syndrome is characterized by the sole emergence of oligoclonal auto-reactive T lymphocytes, resulting in erythroderma and enteropathy. Omenn syndrome (OS) shares the genetic aetiology of T-B-NK+ SCID, with mutations in RAG1, RAG2, or DCLRE1C.

Methods: Patients diagnosed with T-B-NK+ SCID or phenotypes suggestive of Omenn syndrome were investigated by molecular genetic studies using gene tightly linked microsatellite markers followed by direct sequencing of the coding regions and splice sites of the respective candidate genes.

Results: We report the molecular genetic basis of T-B-NK+ SCID in 22 patients and of OS in seven patients all of Arab descent from Saudi Arabia. Among the SCID patients, six (from four families) displayed four homozygous missense mutations in RAG1 including V433M, R624H, R394W, and R559S. Another four patients (from three familes) showed 3 novel homozygous RAG2 mutations including K127X, S18X, and Q4X; all of which predict unique premature truncations of RAG2 protein. Among Omenn patients, four (from two families) have S401P and R396H mutations in RAG1, and a fifth patient has a novel I444M mutation in RAG2. Seven other patients (six SCID and one OS) showed a gross deletion in exons 1-3 in DCLRE1C. Altogether, mutations in RAG1/2 and DCLRE1C account for around 50% and 25%, respectively, in our study cohort, a proportion much higher than in previous reported series. Seven (24%) patients lack a known genetic aetiology, strongly suggesting that they carry mutations in novel genes associated with SCID and Omenn disorders that are yet to be discovered in the Saudi population.

Conclusion: Mutation-free patients who lack a known genetic aetiology are likely to carry mutations in the regulatory elements in the SCID-causing genes or in novel genes that are yet to be discovered. Our efforts are underway to investigate this possibility by applying the whole genome scans on these cases via the use of Affymetrix high density DNA SNP chips in addition to homozygosity mapping.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2780402PMC
http://dx.doi.org/10.1186/1471-2350-10-116DOI Listing

Publication Analysis

Top Keywords

omenn syndrome
16
genetic aetiology
12
t-b-nk+ scid
12
mutations rag1
12
patients
9
severe combined
8
combined immunodeficiency
8
saudi arabia
8
molecular genetic
8
scid patients
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!