Background: Protein kinase C interacting protein (PKCI/HINT1) is a small protein belonging to the histidine triad (HIT) family proteins. Its brain immunoreactivity is located in neurons and neuronal processes. PKCI/HINT1 gene knockout (KO) mice display hyper-locomotion in response to D-amphetamine which is considered a positive symptom of schizophrenia in animal models. Postmortem studies identified PKCI/HINT1 as a candidate molecule for schizophrenia and bipolar disorder. We investigated the hypothesis that the PKCI/HINT1 gene may play an important role in regulating mood function in the CNS. We submitted PKCI/HINT1 KO mice and their wild type (WT) littermates to behavioral tests used to study anti-depressant, anxiety like behaviors, and goal-oriented behavior. Additionally, as many mood disorders coincide with modifications of hypothalamic-pituitary-adrenal (HPA) axis function, we assessed the HPA activity through measurement of plasma corticosterone levels.
Results: Compared to the WT controls, KO mice exhibited less immobility in the forced swim (FST) and the tail suspension (TST) tests. Activity in the TST tended to be attenuated by acute treatment with valproate at 300 mg/kg in KO mice. The PKCI/HINT1 KO mice presented less thigmotaxis in the Morris water maze and spent progressively more time in the lit compartment in the light/dark test. In a place navigation task, KO mice exhibited enhanced acquisition and retention. Furthermore, the afternoon basal plasma corticosterone level in PKCI/HINT1 KO mice was significantly higher than in the WT.
Conclusion: PKCI/HINT1 KO mice displayed a phenotype of behavioral and endocrine features which indicate changes of mood function, including anxiolytic-like and anti-depressant like behaviors, in conjunction with an elevated corticosterone level in plasma. These results suggest that the PKCI/HINT 1 gene could be important for the mood regulation function in the CNS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2780446 | PMC |
http://dx.doi.org/10.1186/1471-2202-10-132 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!