A majority of the proteins of the chloroplast are encoded by the nuclear genome, and are post-translationally targeted to the chloroplast. From databases of tagged insertion lines at international seed stock centers and our own stock, we selected 3246 Ds/Spm (dissociator/suppressor-mutator) transposon- or T-DNA-tagged Arabidopsis lines for genes encoding 1369 chloroplast proteins (about 66% of the 2090 predicted chloroplast proteins) in which insertions disrupt the protein-coding regions. We systematically observed 3-week-old seedlings grown on agar plates, identified mutants with abnormal phenotypes and collected homozygous lines with wild-type phenotypes. We also identified insertion lines for which no homozygous plants were obtained. To date, we have identified 111 lines with reproducible seedling phenotypes, 122 lines for which we could not obtain homozygotes and 1290 homozygous lines without a visible phenotype. The Chloroplast Function Database presents the molecular and phenotypic information obtained from this resource. The database provides tools for searching for mutant lines using Arabidopsis Genome Initiative (AGI) locus numbers, tagged line numbers and phenotypes, and provides rapid access to detailed information on the tagged line resources. Moreover, our collection of insertion homozygotes provides a powerful tool to accelerate the functional analysis of nuclear-encoded chloroplast proteins in Arabidopsis. The Chloroplast Function Database is freely available at http://rarge.psc.riken.jp/chloroplast/. The homozygous lines generated in this project are also available from the various Arabidopsis stock centers. We have donated the insertion homozygotes to their originating seed stock centers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-313X.2009.04074.x | DOI Listing |
Biol Sex Differ
January 2025
Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
UK Dementia Research Institute at Cardiff University, Cardiff, South Glamorgan, United Kingdom.
Background: Genome-wide association studies (GWAS) in Alzheimer's disease (AD) implicate complement in pathogenesis. Complement receptor 1 (CR1; CD35) is a top AD-associated GWAS hit; the long variant, CR1*2, associates with risk. The roles of CR1 in brain and how variants influence AD risk are poorly understood.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA.
Background: The Apoliproprotein E (APOE) e4 allele is the most significant genetic risk factor for late-onset Alzheimer disease (AD). However, the risk associated with the APOE e4 allele differs across populations with individuals of African ancestry having a reduced risk than individuals of European (EU) ancestry. Further, single-nuclei RNAseq analysis in autopsy samples from AD APOEε4 homozygotes with EU Local Ancestry (LA) had a significantly increased APOEε4 expression compared to those with African LA, particularly in astrocytes.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
John P. Hussman Institute for Human Genomics, Miller School of Medicine, Miami, FL, USA.
Background: We identified the missense variant Ser1038Cys (rs377155188) in the tetratricopeptide repeat domain 3 (TTC3) gene that segregate in a non-Hispanic white late onset Alzheimer disease (LOAD) family. This variant is predicted to be deleterious and extremely rare (MAF<0.01%).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Kansas Medical Center, Kansas City, KS, USA.
Background: Amyloid Precursor Protein (APP) processing to Aβ is well understood but the function of APP is largely unknown. APP is expressed ubiquitously and localizes to mitochondria. The consequences of mitochondrial APP localization are not known.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!