There is a major challenge in maintaining functional hepatocytes in vivo as these cells rapidly lose their metabolic properties in culture. In this work we have developed a bioengineered platform that replaces the use of the collagen I--in the traditional culture sandwich technique--by a defined extracellular matrix analogue, the self-assembling peptide hydrogel RAD16-I functionalized with biologically active motifs. Thus, after examining side by side the two culture systems we have found that in both cases hepatocytes acquired similar parenchymal morphology, presence of functional bile canaliculi structures, CYP3A2 induction by dexamethasone, urea production, secretion of proteins such as apolipoprotein (class A1, E, J), alpha(1)-microglobulin, alpha(1)-macroglobulin, retinol binding protein, fibronectin, alpha(1)-inhibitor III and biotin-dependent carboxylases. Interestingly, by assessing in more detail some other hepatic markers, one of the functionalized matrix analogues--carrying the 67 kD laminin receptor ligand--enhanced the gene expression of albumin, HNF4-alpha, MDR2 and tyrosine aminotransferase. We conclude that the use of a synthetic culture system with designed matrix functionalization has the advantage in controlling specific cellular responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4516494PMC
http://dx.doi.org/10.1111/j.1582-4934.2009.00970.xDOI Listing

Publication Analysis

Top Keywords

self-assembling peptide
8
peptide hydrogel
8
functionalized self-assembling
4
hydrogel enhance
4
enhance maintenance
4
maintenance hepatocyte
4
hepatocyte activity
4
activity vitro
4
vitro major
4
major challenge
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!