The aim of the study was to investigate whether parity-specific phenotypes provide a clearer picture of quantitative trait loci (QTL) affecting calving traits in German Holsteins than breeding values estimated across parities. In experiment I, approximate daughter yield deviations were calculated by applying a univariate sire model assuming unrelated sires used as phenotypes in a QTL mapping study. These results were compared with those obtained using deregressed estimated breeding values obtained from the routine German sire evaluation (experiment II). In experiment I, 17 chromosome-wise significant QTL were found for the first parity, but only 12 for the second parity. Only three QTL for maternal stillbirth, located on BTA7, 15 and 23, showed an experiment-wise significance. Experiment II revealed 15 chromosome-wise significant QTL. The results differed markedly between first and second parity within experiment I, as well as between experiment I and II. The present study showed that parity-specific daughter yield deviations are beneficial for mapping QTL for calving traits. Furthermore, it is expected that the use of sharper phenotypes will also be advantageous for QTL fine mapping and the identification of candidate genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1439-0388.2009.00804.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!