A new series of macrocyclic complexes of type [M(TML)X]X(2), where M = Cr(III), Fe(III), TML is tetradentate macrocyclic ligand, and X = Cl(-), NO(3)(-), CH(3)COO(-), have been synthesized by condensation of isatin and ethylenediamine in the presence of metal salt. The complexes were synthesized by both conventional and microwave methods. The complexes have been characterized with the help of elemental analysis, conductance measurement, magnetic measurement, and infrared, far infrared, and electronic spectral studies. Molar conductance values indicate them to be 1:2 electrolytes. Electronic spectra along with magnetic moments suggest five-coordinate square pyramidal geometry for these complexes. The complexes were also tested for their in vitro antibacterial activity. Some of the complexes showed satisfactory antibacterial activitiy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/14756360903190754 | DOI Listing |
Invest Radiol
October 2024
From the Research and Innovation Department, Guerbet, Roissy, France (I.M., M.-C.D.G., J.-F.M., A.D., Y.B., N.D., I.S., G.B., C.M., C.F., O.R., S.C.); General, Organic, and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium (C.H., S.L.); and Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany (C.K., T.J.M., U.K.).
Objectives: Gadopiclenol is a q = 2 pyclen gadolinium-based contrast agent (GBCA) recently approved by the Food and Drug Administration, European Medicines Agency, and other European countries. The aim of this report is to demonstrate its stability in multiple stressed in vitro conditions and in vivo, in rat kidney, while maintaining its higher relaxivity compared with conventional GBCAs on the market.
Materials And Methods: Both gadopiclenol and its chemical precursor Pi828-Gd were characterized and compared with q = 1 gadolinium (Gd) complexes.
J Chem Theory Comput
December 2024
Changping Laboratory, No. 28 Life Science Park Rd., Beijing 102206, China.
Accurate modeling of host-guest systems is challenging in modern computational chemistry. It requires intermolecular interaction patterns to be correctly described and, more importantly, the dynamic behaviors of macrocyclic hosts to be accurately modeled. Pillar[]arenes as a crucial family of macrocycles play a critical role in host-guest chemistry and biomedical applications.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
The photoswitching of supramolecular host-guest complexes is the basis of numerous molecularly controlled macroscopic functions, such as sol-gel transition, photopharmacology, the active transport of ions or molecules, light-powered molecular machines, and much more. The most commonly used systems employ photoactive azobenzene guests and synthetic host molecules, which bind as the stable isomers and dissociate as the forms after exposure to UV light. We present a new, extraordinarily efficient cucurbit[7]uril (CB7)/diazocine host/guest complex with inverted stability that self-assembles under UV irradiation and dissociates in the dark.
View Article and Find Full Text PDFJ Med Chem
December 2024
Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33607 Pessac, France.
Combining helical foldamers with α-peptides can produce α-helix mimetics with a reduced peptide character and enhanced resistance to proteolysis. Previously, we engineered a hybrid peptide-oligourea sequence replicating the N-terminal α-helical domain of p53 to achieve high affinity binding to hDM2. Here, we further advance this strategy by combining the foldamer approach with side chain cross-linking to create more constrained cell-permeable inhibitors capable of effectively engaging the target within cells.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter, The State Key Laboratory of Structural Chemistry, 155 Yangqiao Road West, 350002, Fuzhou, CHINA.
Macrocycles represent one important class of functional molecules, and dynamic macrocycles with the potential of cleavability, adaptability, and topological conversion are challenging. Herein we report photoswitchable allosteric and topological control of dynamic covalent macrocycles and further the use in guest binding and mechanically interlocked molecules. The manipulation of competing ring-chain equilibria and bond formation/scission within reaction systems enabled light-induced structural regulation over dithioacetal and thioacetal dynamic bonds, accordingly realizing bidirectional switching between crown ether-like covalent macrocycles and their linear counterparts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!