A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Colloidal and bacterial deposition: role of gravity. | LitMetric

Colloidal and bacterial deposition: role of gravity.

Langmuir

Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA.

Published: January 2010

The role of gravitational force on the deposition of 0.5, 1.1, and 1.8 mum carboxylate-modified polystyrene latex (CML) microspheres and bacterium Burkholderia cepacia G4g has been evaluated using a parallel plate flow chamber system. This experimental system utilized an inverted and an upright optical microscope attached with image-capturing devices to directly observe and determine the deposition kinetics onto glass surfaces located at the top and bottom of the flow chamber. Deposition kinetics was quantified at 10 mM KCl under electrostatically unfavorable and favorable attachment conditions and at two flow rates (0.06 and 3 mL/min), simulating the range of flow velocities from groundwater to rapid granular filtration. Comparing the particle deposition kinetics on the top and bottom surfaces under identical flowing exposure time, fluid chemistries, and hydrodynamic conditions, results showed that significant differences were observed between the two surfaces, suggesting that gravity was a significant driving force for the initial stages of deposition of particles that were larger than 1 mum size. Simulation results utilizing a particle trajectory model confirmed these experimental observations. This was further supported by additional deposition experiments with 1.1 mum microspheres suspended in a deuterium oxide (D(2)O)/water mixture (heavy water) where the density of colloid and the suspending heavy water were effectively the same. Under this condition, deposition rates were observed to be identical between the top and bottom surfaces. Results from normal and heavy water solutions indicated that the greater deposition of colloidal particles larger than 1 mum on the bottom in normal water solutions is due to gravity. Finally, the experimental results were compared with deposition studies using smaller 0.5 mum colloids as well as some theoretical calculations of expected rates of particle deposition.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la903089xDOI Listing

Publication Analysis

Top Keywords

deposition kinetics
12
top bottom
12
heavy water
12
deposition
11
flow chamber
8
particle deposition
8
bottom surfaces
8
particles larger
8
larger mum
8
water solutions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!