Wingate Anaerobic Test peak power and anaerobic capacity classifications for men and women intercollegiate athletes.

J Strength Cond Res

Department of Athletics, United States Air Force Academy, USAFA, Colorado, USA.

Published: December 2009

The Wingate Anaerobic Test (WAnT) has been established as an effective tool in measuring both muscular power and anaerobic capacity in a 30-second time period; however, there are no published normative tables by which to compare WAnT performance in men and women intercollegiate athletics. The purpose of this study was to develop a classification system for anaerobic peak power and anaerobic capacity for men and women National Collegiate Athletic Association (NCAA) Division I college athletes using the WAnT. A total of 1,585 (1,374 men and 211 women) tests were conducted on athletes ranging from the ages of 18 to 25 years using the WAnT. Absolute and relative peak power and anaerobic capacity data were recorded. One-half standard deviations were used to set up a 7-tier classification system (poor to elite) for these assessments. These classifications can be used by athletes, coaches, and practitioners to evaluate anaerobic peak power and anaerobic capacity in their athletes.

Download full-text PDF

Source
http://dx.doi.org/10.1519/JSC.0b013e3181b1b21bDOI Listing

Publication Analysis

Top Keywords

power anaerobic
20
anaerobic capacity
20
peak power
16
men women
12
wingate anaerobic
8
anaerobic test
8
anaerobic
8
women intercollegiate
8
classification system
8
anaerobic peak
8

Similar Publications

Enhancing Performance in Young Athletes: A Systematic Review of Acute Supplementation Effects.

Nutrients

December 2024

Research Unit for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, University of Coimbra, 3040-248 Coimbra, Portugal.

Background/objectives: The increasing popularity of acute supplementation among young athletes is concerning, given the limited scientific evidence to guide recommendations specific to this group. Therefore, the aim of this systematic review was to synthesize the available scientific evidence on the acute effects of supplementation in young athletes to understand the impact on physical and cognitive performance.

Methods: Following pre-registration on INPLASY (INPLASY202310017) and according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, systematic searches of three electronic databases (Web of Science, PubMed, and Scopus) were conducted by independent researchers from inception until July 2024.

View Article and Find Full Text PDF

Introduction: Our recent meta-analyses have demonstrated that high-intensity interval training (HIIT) causes a range of mean changes in various measures and predictors of endurance and sprint performance in athletes. Here, we extend the analyses to relationships between mean changes of these measures and consider implications for understanding and improving HIIT that were not apparent in the previous analyses.

Methods: The data were mean changes from HIIT with highly trained endurance and elite other (mainly team sport) athletes in studies where two or more measures or predictors of performance were available.

View Article and Find Full Text PDF

Understanding the microbial processes on carbon brushes that accelerate methanogenesis of long-chain fatty acids in anaerobic digestion.

Water Res

December 2024

MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China. Electronic address:

Lipids offer high energy recovery potential during anaerobic digestion (AD), but their hydrolysis generates long-chain fatty acids (LCFAs), which are difficult to biodegrade. The introduction of microbial electrolysis cells has been widely recognized as a promising strategy to enhance AD. However, it is still under debate whether the electrical circuit needs to be connected, as certain electrodes with large specific surface areas have been reported to enhance direct interspecies electron transfer (DIET) without requiring an external power supply.

View Article and Find Full Text PDF

Self-driven electrochemical system for struvite and energy recovery from digested wastewater: Device optimization strategy and long-term operation.

J Environ Manage

January 2025

School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Key Laboratory of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.

A self-driven electrochemical system (SDES) was utilized to treat anaerobic digestate wastewater, aiming to achieve wastewater resource utilization and energy generation. The efficiencies of pollutant removal, resource recovery, and energy production were enhanced by adjusting device parameters (anode area, external resistance, and electrode spacing). The high pollutant removal rates and struvite purity were achieved with the magnesium anode area of 15 cm, external resistance of 10 Ω, and electrode spacing of 10 cm.

View Article and Find Full Text PDF

To assess how altitude training impacts force-velocity-power (F-V-P) profiling and muscular power and anaerobic capacity in elite badminton players in reference to intra- and inter-individual sex-based variability. Following a quasi-experimental design, 14 players (6 females, 8 males) from the French national badminton singles and doubles teams performed a 3-week 'living high-training high' camp at natural altitude (2320 m). F-V-P profile and Wingate anaerobic test were assessed Pre- and Post-intervention, using ANOVA repeated measures conventional statistics, with further estimation statistics to show the magnitude of the testing condition and visualize intra- and inter-individual responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!