Study Design: A biomechanical study using human cadaveric thoracolumbar spinal columns.

Objective: To compare the effect of treatment by vertebroplasty (VP) with polymethylmethacrylate cement and VP with calcium phosphate cement on the creation of adjacent vertebral body fracture following VP.

Summary Of Background Data: Adjacent vertebral body fractures have been reported as a complication following VP.

Methods: Twenty-four spinal columns (T10-L2) from human cadavers were subjected to dual energy radiograph absorptiometry to assess bone mineral density. They were divided into the P group and C group, and experimental vertebral compression fractures were created at T12 vertebrae. T12 vertebrae were augmented with polymethylmethacrylate and calcium phosphate cement in the P group and C group, respectively. Each spinal column was compressed until a new fracture occurred at any vertebra, and the location of newly fractured vertebra and failure load was investigated.

Results: There was no significant difference in bone mineral density at each level within each group. In the P group, a new fracture occurred at T10 in 2 specimens, T11 in 8, and L1 in 2. In the C group, it occurred at T10 in 1 specimen, T11 in 2, L1 in 1, and T12 (treated vertebra) in 8. The failure loads of the spinal column were 1774.8+/-672.3 N and 1501.2+/-556.5 N in the P group and C group, respectively. There was no significant difference in the failure load of the spinal column between each group.

Conclusion: New vertebral fractures occurred at the vertebra adjacent to augmented vertebrae in the P group and in the augmented vertebrae in the C group. The difference in the fractured site may be because of the difference in strength between the 2 bone filler materials. Therefore, the strength of bone filler materials is considered a risk factor in developing adjacent vertebral body fractures after VP.

Download full-text PDF

Source
http://dx.doi.org/10.1097/BRS.0b013e3181abc150DOI Listing

Publication Analysis

Top Keywords

adjacent vertebral
16
vertebral body
16
group group
16
calcium phosphate
12
phosphate cement
12
spinal column
12
group
11
body fracture
8
vertebroplasty polymethylmethacrylate
8
polymethylmethacrylate calcium
8

Similar Publications

Background: Giant sacral and presacral schwannomas are very rare conditions and their prevalence is estimated to account for only 0.3 to 3.3% of overall schwannomas.

View Article and Find Full Text PDF

A data-driven framework for developing a unified density-modulus relationship for the human lumbar vertebral body.

J Mech Behav Biomed Mater

January 2025

Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA; Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.

Despite the broad agreement that bone stiffness is heavily dependent on the underlying bone density, there is no consensus on a unified relationship that applies to both cancellous and cortical compartments. Bone from the two compartments is generally assessed separately, and few mechanical test data are available for samples from the transitional regions between them. In this study, we present a data-driven framework integrating experimental testing and numerical modeling of the human lumbar vertebra through an energy balance criterion, to develop a unified density-modulus relationship across the entire vertebral body, without the necessity of differentiation between trabecular and cortical regions.

View Article and Find Full Text PDF

Context: Transcutaneous spinal stimulation (TSS), applied to the cervical spine, is able to improve voluntary upper extremity strength and function in individuals with cervical spinal cord injury (SCI). While most respond and improve in the presence of TSS, others do not respond as favorably. Midsagittal tissue bridges, adjacent to the lesion, can be observed and measured using T-weighted magnetic resonance imaging (MRI), and both ventral and dorsal tissue bridges are associated with recovery following SCI.

View Article and Find Full Text PDF

Background: No studies have evaluated the impact of the cement distribution as classified on the basis of the fracture bone marrow edema area (FBMEA) in magnetic resonance imaging (MRI) on the efficacy of percutaneous vertebral augmentation (PVA) for acute osteoporotic vertebral fractures.

Methods: The clinical data of patients with acute, painful, single-level thoracolumbar osteoporotic fractures were retrospectively analyzed. The bone cement distribution on the postoperative radiograph was divided into 4 types according to the distribution of the FBMEA on the preoperative MRI.

View Article and Find Full Text PDF

Purpose: Fibrosis of muscle spindles (sensory organs) in back muscles induced by intervertebral disc (IVD) degeneration could limit transmission of muscle stretch to the sensory receptor and explain the proprioceptive deficits common in back pain. Exercise reduces back muscles fibrosis. This study investigated whether targeted muscle activation via neurostimulation reverses or resolves muscle spindle fibrosis in a model of IVD injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!