Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Progressive loss of podocytes has been documented as an early lesion in the development of glomerular disease. In a variety of glomerular diseases, including diabetic nephropathy the activation of transforming growth factor-beta (TGF-beta) has been demonstrated to promote podocyte death and the development of glomerulosclerosis. In this manuscript we analyzed the role of PKC-alpha (PKCalpha) on TGF-beta1 induced apoptosis in podocytes.
Methods: To accomplish this we generated stable murine PKCalpha deficient podocyte cell lines and examined survival- and pro-apoptotic signaling signatures as well as caspase activation after stimulation with TGF-beta.
Results: After stimulation with TGF-beta we can demonstrate an enhanced and prolonged activation of PI3K/AKT and ERK1/2 in PKCalpha-knockout (PKCalpha-/-) podocytes compared to PKCalpha-wildtype (PKCalpha+/ +) podocytes, whereas proapoptotic signaling via p38MAPK is significantly reduced. Interestingly, activation of the Smad-pathway is also prolonged in the PKCalpha-/-podocytes. When we analyzed the underlying mechanisms we found a TGF-beta inducible interaction of PKCalpha with the TGF-beta-type-I-receptor (TGFbetaRI). Moreover, endocytosis assays showed that the TGFbetaRI is less internalized in PKCalpha-/- podocytes.
Conclusion: Since we can demonstrate a key role for PKCalpha in the signaling response after stimulation with TGF-beta we conclude that PKCalpha might be an interesting target molecule as a "podocyte protective" therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000257518 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!