Cellular remodeling of the extracellular matrix (ECM), an essential component of many physiological and pathological processes, is dependent on the trafficking and secretion of matrix metalloproteinases (MMPs). Soluble NSF attachment protein receptor (SNARE)-mediated membrane traffic has documented roles in cell-ECM interactions and the present study specifically examines SNARE function in the trafficking of MMPs during ECM degradation. Using the invasive human fibrosarcoma cell line HT-1080, we demonstrate that a plasma membrane SNARE, SNAP23, and an endosomal v-SNARE, VAMP3 (also known as cellubrevin), partly colocalize with MMP2 and MMP9, and that inhibition of these SNAREs using dominant-negative SNARE mutants impaired secretion of the MMPs. Inhibition of VAMP3, SNAP23 or syntaxin-13 using dominant-negative SNARES, RNA interference or tetanus toxin impaired trafficking of membrane type 1 MMP to the cell surface. Consistent with these observations, we found that blocking the function of these SNAREs reduced the ability of HT-1080 cells to degrade a gelatin substrate in situ and impaired invasion of HT-1080 cells in vitro. The results reveal the importance of VAMP3, syntaxin-13 and SNAP23 in the trafficking of MMP during degradation of ECM substrates and subsequent cellular invasion.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.052761DOI Listing

Publication Analysis

Top Keywords

vamp3 syntaxin-13
8
syntaxin-13 snap23
8
secretion matrix
8
matrix metalloproteinases
8
extracellular matrix
8
ht-1080 cells
8
vamp3
4
snap23
4
snap23 involved
4
involved secretion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!