Purpose: Radioembolization (RE) via yttrium-90 ((90)Y) microspheres is an effective and safe treatment for unresectable liver malignancies. However, no data are available regarding the impact of local blood flow dynamics on (90)Y-microsphere transport and distribution in the human hepatic arterial system.
Methods And Materials: A three-dimensional (3-D) computer model was developed to analyze and simulate blood-microsphere flow dynamics in the hepatic arterial system with tumor. Supplemental geometric and flow data sets from patients undergoing RE were also available to validate the accuracy of the computer simulation model. Specifically, vessel diameters, curvatures, and branching patterns, as well as blood flow velocities/pressures and microsphere characteristics (i.e., diameter and specific gravity), were measured. Three-dimensional computer-aided design software was used to create the vessel geometries. Initial trials, with 10,000 noninteracting microspheres released into the hepatic artery, used resin spheres 32-microm in diameter with a density twice that of blood.
Results: Simulations of blood flow subject to different branch-outlet pressures as well as blood-microsphere transport were successfully carried out, allowing testing of two types of microsphere release distributions in the inlet plane of the main hepatic artery. If the inlet distribution of microspheres was uniform (evenly spaced particles), a greater percentage would exit into the vessel branch feeding the tumor. Conversely, a parabolic inlet distribution of microspheres (more particles around the vessel center) showed a high percentage of microspheres exiting the branch vessel leading to the normal liver.
Conclusions: Computer simulations of both blood flow patterns and microsphere dynamics have the potential to provide valuable insight on how to optimize (90)Y-microsphere implantation into hepatic tumors while sparing normal tissue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijrobp.2009.06.069 | DOI Listing |
Comput Methods Biomech Biomed Engin
January 2025
Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Guangdong Province, China.
Impeller radial gap is one of important parts within a blood pump, which may affect the hemodynamics and hemocompatibility. In this study, computational fluid dynamics method was performed to evaluate the impact of radial gap sizes. The volume of scalar shear stress decreased with radial gap sizes increasing.
View Article and Find Full Text PDFPediatr Blood Cancer
January 2025
Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya.
Background: Pediatric brain tumors are understudied compared to other pediatric malignancies in low- and middle-income countries. Care delivery is inherently dependent on collaboration between multiple departments. This study aimed to present baseline data of pediatric neuro-oncology care in Western Kenya and illustrate barriers and facilitators of multidisciplinary care.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.
Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality globally, with elevated low-density lipoprotein cholesterol (LDL-C) levels being a major risk factor. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a critical role in regulating LDL-C levels by promoting the degradation of hepatic low-density lipoprotein receptors (LDLR) responsible for clearing LDL-C from the circulation. PCSK9 inhibitors are novel lipid-modifying agents that have demonstrated remarkable efficacy in reducing plasma LDL-C levels and decreasing the incidence of CVD.
View Article and Find Full Text PDFArtif Organs
January 2025
BioCirc Research Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA.
Background: Safe and effective pediatric blood pumps continue to lag far behind those developed for adults. To address this growing unmet clinical need, we are developing a hybrid, continuous-flow, magnetically levitated, pediatric total artificial heart (TAH). Our hybrid TAH design, the Dragon Heart (DH), integrates both an axial flow and centrifugal flow blood pump within a single, compact housing.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Cardiovascular & Thoracic Anaesthesia and Critical Care, University Hospital of Martinique, F-97200 Fort-de-France, Martinique, France.
Acute cardiovascular disorders are incriminated in up to 33% of maternal deaths, and the presence of sickle cell anemia (SCA) aggravates the risk of peripartum complications. Herein, we present a 24-year-old Caribbean woman with known SCA who developed a vaso-occlusive crisis at 36 weeks of gestation that required emergency Cesarean section. In the early postpartum period, she experienced fever with rapid onset of acute respiratory distress in the context of COVID-19 infection that required tracheal intubation and mechanical ventilatory support with broad-spectrum antibiotics and blood exchange transfusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!