Conventional formulations of chlorhexidine usually provide short-term efficiency, requiring repeated applications to maintain antibacterial activity. Therefore, appropriate release system of chlorhexidine controlling local drug delivery would reduce the number of applications and enhance patient compliance. The aim of this study was to develop a controlled release system based on medical polyurethane for the local delivery of chlorhexidine diacetate (CDA). CDA-loaded polyurethane films (CDA-Films) and CDA-loaded polyurethane sandwiches (CDA-Sandwiches) were obtained by casting and solvent evaporation. The physico-chemical aspects of CDA-loaded polyurethane systems were investigated, and the crystalline state of CDA in the polymeric system was highlighted. CDA-Films exhibited appropriate mechanical properties for further applications. Drug release was measured in two different media: (i) distilled water and (ii) physiological saline solution to mimic in vivo conditions. Drug release studies were performed up to 11days on CDA-Films and 29days for CDA-Sandwiches. Release of CDA depended on drug loading and the structure of the system. In particular, release of CDA from the sandwich system followed zero-order kinetic. The release rate was significantly lower in physiological solution. Antibacterial studies were carried out on CDA-Films against Staphylococcus aureus and Staphylococcus epidermidis showing 35days persisting antibacterial activity. In conclusion, the polyurethane-based system developed in this study is potentially useful as a local delivery system for CDA and could be used not only in surgery but also in dental and clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2009.11.002DOI Listing

Publication Analysis

Top Keywords

release system
12
local delivery
12
cda-loaded polyurethane
12
release
8
controlled release
8
system
8
delivery chlorhexidine
8
chlorhexidine diacetate
8
antibacterial activity
8
drug release
8

Similar Publications

Background: Fungal pretreatment for partial separation of lignocellulosic components may reduce lignocellulose recalcitrance during the production of biofuels and biochemicals. Quantitative and qualitative modification of plant lignin through genetic engineering or traditional breeding may also reduce the recalcitrance. This study was conducted to examine the effects of combining these two approaches using three white rot fungi and mulberry wood with an altered lignin structure.

View Article and Find Full Text PDF

pH-sensitive nano-drug delivery systems dual-target endothelial cells and macrophages for enhanced treatment of atherosclerosis.

Drug Deliv Transl Res

January 2025

Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.

Atherosclerosis (AS) is a chronic inflammatory disease characterized by vascular endothelial dysfunction. In the early stage of the disease, endothelial cell injury induces the infiltration of inflammatory macrophages, which secrete large amounts of inflammatory factors, further aggravating endothelial cell dysfunction and exacerbating the disease. Therefore, it is promising for co-targeting endothelial cells and macrophages further regulating the inflammatory microenvironment and endothelial cell function for effective treatment.

View Article and Find Full Text PDF

Background And Objective: A gonadotropin-releasing hormone (GnRH) agonist such as leuprolide is widely used to achieve sustained suppression of testosterone levels, which play a critical role in the treatment of prostate cancer. Recent advances in drug delivery systems have led to the development of long-acting depot formulations, such as the 6-month intramuscular (IM) leuprolide formulation, which aim to simplify dosing and improve convenience for both patients and healthcare providers. Exploring extended dosing intervals for such formulations represents a promising approach to further optimize treatment regimens, potentially balancing efficacy with patient-centered care.

View Article and Find Full Text PDF

Organ Failure and Prediction of Severity in Acute Pancreatitis.

Gastroenterol Clin North Am

March 2025

Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi 110029, India. Electronic address:

Organ failure (OF) is a sinister development in the clinical course of acute pancreatitis, and its prediction is crucial for triaging the patient. Persistent systemic inflammatory response syndrome and raised interleukin-6 levels have a good predictive accuracy. Pathophysiology involves the release of damage-associated molecular patterns as a consequence of pancreatic injury, recruitment of inflammatory cells, and the release of proinflammatory cytokines and chemokines causing cytokine storm.

View Article and Find Full Text PDF

Development of multifunctional PAA-alginate-carboxymethyl cellulose hydrogel-loaded fiber-reinforced biomimetic scaffolds for controlled release of curcumin.

Int J Biol Macromol

January 2025

MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Center for Next-Generation Sensor Research and Development, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea. Electronic address:

Critical-sized bone defects in osteosarcoma treatment demand multifunctional scaffolds that must effectively integrate two key functions, promoting osteogenesis and delivering targeted chemoprevention. This study introduces a dual-component system featuring pH-responsive hydrogels and hydroxyapatite-based fiber-reinforced biomimetic scaffolds designed for controlled and localized curcumin delivery, while addressing its solubility and stability issues. The hydrogel system comprises a double network of polyacrylic acid, sodium alginate, carboxymethyl cellulose, and potato starch, specifically modified to encapsulate curcumin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!