The photoproduction of hydrogen from water and sunlight represents an attractive means of artificial energy conversion for a world still largely dependent on fossil fuels. A practical technology for producing sun-derived hydrogen remains an unachieved goal, however, and is dependent on developing a better understanding of the key reaction, the oxidation of water to dioxygen. The molecular complexity of this process is such that sophisticated transition metal complexes, which can access low-energy reaction pathways, are considered essential as catalysts. Complexes based on Mn, Co, Ir, and Ru have been described recently; a variety of ligands and nuclearities that comprise many complex topologies have been developed, but very few of them have been studied from a mechanistic perspective. One step in particular needs to be understood and better characterized for the transition-metal-catalyzed oxidation of water to dioxygen, namely, the circumstances under which the formation of O-O bonds can occur. Although there is a large body of work related to the formation of C-C bonds promoted by metal complexes, the analogous literature for O-O bond formation is practically nonexistent and just beginning to emerge. In this Account, we describe the sparse literature existing on this topic, focusing on the Ru-aqua complexes. These complexes are capable of reaching high oxidation states as a result of the sequential and simultaneous loss of protons and electrons. A solvent water molecule may or may not participate in the formation of the O-O bond; accordingly, the two main pathways are named (i) solvent water nucleophilic attack (WNA) and (ii) interaction of two M-O units (I2M). Most of the complexes described belong to the WNA class, including a variety of mononuclear and polynuclear complexes containing one or several Ru-O units. A common feature of these complexes is the generation of formal oxidation states as high as Ru(V) and Ru(VI), which render the oxygen atom of the Ru-O group highly electrophilic. On the other hand, only one symmetric dinuclear complex that undergoes an intramolecular O-O bond formation step has been described for the I2M class; it has a formal oxidation state of Ru(IV). A special section is devoted to Ru-OH(2) complexes that contain redox active ligands, such as the chelating quinone. These ligands are capable of undergoing reversible redox processes and thus generate a complex but fascinating electron-transfer process between the metal and the ligand. Despite the intrinsic experimental difficulties in determining reaction mechanisms, progress with these Ru complexes is now beginning to be reported. An understanding of recent successes, as well as pitfalls, is essential in the search for a practical water oxidation catalyst.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ar900240w | DOI Listing |
Angew Chem Int Ed Engl
January 2025
University of Bari: Universita degli Studi di Bari Aldo Moro, Dept. of Pharmacy - Drug Sciences, via E. Orabona 4, 70125, Bari, ITALY.
Strained spiro-heterocycles (SSH) have gained significant attention within the medicinal chemistry community as promising (sp3)-rich bioisosteres for their aromatic and non-spirocyclic counterparts. We herein report access to an unprecedented spiro-heterocycle - 1,5-dioxaspiro[2.3]hexane.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.
Stem cell implantation holds promise for enhancing bone repair, but risks of pathogen transmission and malignant cell transformation should not be ignored. Compared to stem cell implantation, recruitment of endogenous stem cells to injured sites is more critical for in situ bone regeneration. In this study, based on the acidic microenvironment of bone injury, an HG-AA-SDF-1α composite hydrogel with a dual-control intelligent switch function is developed by incorporating stromal cell-derived factor (SDF-1α), arginine carbon dots (Arg-CDs), and calcium ions (Ca) into the oxidized hyaluronic acid/gelatin methacryloyl (HG) hydrogel.
View Article and Find Full Text PDFCrit Rev Microbiol
January 2025
Oral Microbiology, Bristol Dental School, University of Bristol, United Kingdom.
This review discusses the chemical properties, synthesis and detection, and biological functions of a molecular group of cis-2-unsaturated fatty acids, containing fatty acid carbon chains of various lengths and cis double-bond configurations, known as the diffusible signaling factor family (DSFF). Early postulation of the conserved nature of the DSFF among Gram-negative bacteria have now been challenged by the latest evidences that unraveled their presence in a various other distinct microorganisms. Over the last decade, a significant depth and breadth of understanding has been made on the multifaceted functions of DSFFs among bacteria, and their interactions with evolutionarily divergent fungi, plants insects and small animals.
View Article and Find Full Text PDFChem Sci
January 2025
College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 P. R. China
In the past few years, the direct activation of organohalides by ligated boryl radicals has emerged as a potential synthetic tool for cross-coupling reactions. In most existing methods, ligated boryl radicals are accessed from NHC-boranes or amine-boranes. In this work, we report a new photocatalytic platform by modular assembly of readily available amines and diboron esters to access a library of ligated boryl radicals for reaction screening, thus enabling the cross-coupling of organohalides and alkenes including both activated and unactivated ones for C(sp)-C(sp) bond formation by using the assembly of DABCO A1 and BNepB1.
View Article and Find Full Text PDFACS Phys Chem Au
January 2025
Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung 402, Taiwan.
Novel coumarin-triphenyliminophosphorane (TPIPP) fluorophores, synthesized via a nonhydrolytic Staudinger reaction, exhibit remarkable redox-responsive optical properties. Upon chemical and electrochemical oxidation, these compounds display a hypsochromic shift in absorption from 430 to 350 nm, accompanied by up to 11-fold fluorescence enhancement under 405 nm excitation. The fluorescence switching occurs at an electrochemical oxidation potential of approximately +2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!