In this report, high-purity nanocrystalline boron powders processed by ball-milling were used as the precursor powders to fabricate MgB2 superconductor. The transport properties and the critical current density in the samples made from ball-milled boron powders and as-supplied boron powders were investigated. It was found that the ball-milled boron powders led to a significant enhancement of the critical current density in MgB2 sintered at 650 degrees C. The reason can be attributed to the small MgB2 grain size caused by the ball-milled boron precursor powders. The resistivity of the samples made from the ball-milled boron powder was lower than that of the sample from as-supplied boron powder. As the sintering temperature increased, both resistivity and upper critical field decreased in the samples using the ball-milled boron powders as a precursor. Poor connectivity and large strain are responsible for the high resistivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2009.1764 | DOI Listing |
Materials (Basel)
January 2025
Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Krakow, Poland.
This paper presents a comprehensive study of two tool materials designed for the machining of Inconel 718 superalloy, produced through two distinct sintering techniques: High Pressure-High Temperature (HPHT) sintering and Spark Plasma Sintering (SPS). The first composite (marked as BNT), composed of 65 vol% cubic boron nitride (cBN), was sintered from the cBN-TiN-TiSiC system using the HPHT technique at a pressure of 7.7 GPa.
View Article and Find Full Text PDFChemistry
January 2025
University of Delaware, Chemistry and Biochemistry, UNITED STATES OF AMERICA.
We describe synthesis of BN-doped nanographene containing five phenylene units, boron and nitrogen atoms with both alternating ortho-disposition as well as direct B-N connection. Resulting BN doped nanographene exhibits blue fluorescence at 441 nm with extraordinary narrow fluorescence peak with full width at half maximum (FWHM) = 10-11 nm. Crystallography reveals supramolecular organization of this compound in the crystal phase.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Civil Engineering, Faculty of Engineering and Architecture, Recep Tayyip Erdogan University, 53100, Rize, Turkey.
The use of boron minerals as an additive is important in terms of reducing CO emissions and providing input to the economy. Sustainable natural colemanite was subjected to calcination at 550 °C in order to concentrate the amount of BO. For the characterization of calcined mineral, XRD, TGA/DTA, and BO component tests were carried out.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Material Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, China.
W-Mo-V high-speed steel (HSS) is a high-alloy high-carbon steel with a high content of carbon, tungsten, chromium, molybdenum, and vanadium components. This type of high-speed steel has excellent red hardness, wear resistance, and corrosion resistance. In this study, the alloying element ratios were adjusted based on commercial HSS powders.
View Article and Find Full Text PDFSci Rep
January 2025
Production Technology Department, Faculty of Technology and Education, Beni-Suef University, Beni-Suef, 62521, Egypt.
Ball bearings face numerous challenges under harsh operating conditions of elevated pressure between the balls and other contacting parts of the bearing like drop in tribological properties. To address these challenges, this paper presents the first successful experimental investigation of incorporating an innovative hexagonal boron nitride (h-BN) into Aluminum-Carbon nanotube (Al-0.6 wt% CNTs) nanocomposites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!