In this work, the metal plated film was prepared by electroless plating techniques. The film was prepared for the fabrication of EMI shielding. Polyimide film was treated by base solution for etching and then activated by silver. The modified polyimide film was immersed into the electroless copper plating solution which has different molar ratios of nickel in the solution. The thickness and surface morphology of copper layer on the polyimide films were characterized with scanning electron microscopy (SEM). Furthermore, EMI shielding ability of the film was calculated by measuring reflectivity of EM wave on the film surface using the equation of Schelkunoff theory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2009.1600 | DOI Listing |
Opt Express
December 2024
In this study, we developed terahertz (THz) metamaterial devices with attenuated total reflection (ATR) geometries for biosensing applications. This was achieved by transferring the metamaterial patterns fabricated on a polyimide film to a prism-top surface. We characterized the resonance characteristics of metasurfaces for different THz wave polarizations and gap structure orientations in the metamaterials.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China.
Wirelessly driven flexible actuators are crucial to the development of flexible robotic crawling. However, great challenges still remain for the crawling of flexible actuators in complex environments. Herein, we reported a wireless flexible actuator synergistically driven by wireless power transmission (WPT) technology and near-infrared (NIR) light, which consists of a poly(dimethylsiloxane)-graphene oxide (PDMS-GO) composite layer, eutectic gallium-indium alloy (EGaIn), a PDMS layer, and a polyimide (PI) layer.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal.
The development of low-temperature piezoresistive materials provides compatibility with standard silicon-based MEMS fabrication processes. Additionally, it enables the use of such material in flexible substrates, thereby expanding the potential for various device applications. This work demonstrates, for the first time, the fabrication of a 200 nm polycrystalline silicon thin film through a metal-induced crystallization process mediated by an AlSiCu alloy at temperatures as low as 450 °C on top of silicon and polyimide (PI) substrates.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Sciences and Engineering, South China University of Technology, Guangzhou 510640, China.
The praseodymium-doped indium zinc oxide (PrIZO) thin-film transistor (TFT) is promising for applications in flat-panel displays, due to its high carrier mobility and stability. Nevertheless, there are few studies on the mechanism of annealing on PrIZO films and the fabrication of flexible devices. In this work, we first optimized the annealing-process parameters on the glass substrate.
View Article and Find Full Text PDFBioelectrochemistry
January 2025
University of Bologna, Department of Industrial Chemistry "Toso Montanari", Center of Chemical Catalysis-C(3), Via Piero Gobetti 85, 40129 Bologna, Italy. Electronic address:
Print-Light-Synthesis (PLS) combines the inkjet printing of a ruthenium precursor ink with the simultaneous photo-induced generation of ruthenium oxide films. During PLS, inkjet-printing generates on conductive as well as insulating substrates micrometer-thin reaction volumes that contain with high precision defined precursor loadings. Upon direct UV light irradiation, the Ru precursor converts to RuO while all other ink components escape in the gas phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!