X-ray magnetic circular dichroism (XMCD) and Small Angle Neutron Scattering (SANS) measurements were performed on thiol capped Au nanoparticles (NPs) embedded into polyethylene. An XMCD signal of 0.8 x 10(-4) was found at the Au L3 edge of thiol capped Au NPs embedded in a polyethylene matrix for which Superconducting Quantum Interference Device (SQUID) magnetometry yielded a saturation magnetization, M(S), of 0.06 emu/g(Au). SANS measurements showed that the 3.2 nm average-diameter nanoparticles are 28% polydispersed, but no detectable SANS magnetic signal was found with the resolution and sensitivity accessible with the neutron experiment. A comparison with previous experiments carried out on Au NPs and multilayers, yield to different values between XMCD signals and magnetization measured by SQUID magnetometer. We discuss the origin of those differences.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2009.1877DOI Listing

Publication Analysis

Top Keywords

thiol capped
12
x-ray magnetic
8
magnetic circular
8
circular dichroism
8
small angle
8
angle neutron
8
neutron scattering
8
sans measurements
8
nps embedded
8
embedded polyethylene
8

Similar Publications

The detection of cysteine (Cys) and homocysteine (Hcy) in biological fluids has great significance for early diagnosis, including Alzheimer's and Parkinson's disease. The simultaneous determination of Cys and Hcy with a single probe is still a huge challenge. To enlarge the differences in space structure (line and ring) and energy (-721.

View Article and Find Full Text PDF

Thermal Transport through CTAB- and MTAB-Functionalized Gold Interfaces Using Molecular Dynamics Simulations.

J Chem Inf Model

January 2025

251 Nieuwland Science Hall, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.

Thermal transport coefficients, notably the interfacial thermal conductance, were determined in planar and spherical gold interfaces functionalized with CTAB (cetyltrimethylammonium bromide) or MTAB (16-mercapto-hexadecyl-trimethylammonium bromide) using reverse nonequilibrium molecular dynamics (RNEMD) methods. The systems of interest included (111), (110), and (100) planar facets as well as nanospheres ( = 10 Å). The effect of metal polarizability was investigated through the implementation of the density-readjusted embedded atom model (DR-EAM), a polarizable metal potential.

View Article and Find Full Text PDF

Sequential Infiltration Synthesis of Cadmium Sulfide Discrete Atom Clusters.

Angew Chem Int Ed Engl

January 2025

Material Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois, 60439, United States.

Exposure of soft material templates to alternating volatile chemical precursors can produce inorganic deposition within the permeable template (e.g. a polymer thin film) in a process akin to atomic layer deposition (ALD).

View Article and Find Full Text PDF

The site-specific antibody-drug conjugates (ADCs), particularly those utilizing the engineered cysteine in Fc fragments of mAbs (THIOMAB™ antibodies), have emerged as a novel class of biotherapeutics for cancer treatment. The engineered cysteine residues in these antibodies are capped by cysteine or glutathione through a disulfide bond. Prior to conjugation with linker-payloads, these caps need to be removed through a reduction process.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores a DNA-based growth strategy for bimetallic nanozymes to enhance their peroxidase activity by modifying their shape and structure.
  • Researchers used four types of DNA oligonucleotides to control the synthesis of Pt nanoparticles on DNA-coated Au nanorods and found that the aggregation behavior of these nanorods depended on the DNA's length and type.
  • A new colorimetric sensor was developed using the DNA-modified nanozymes to effectively detect different biological thiols and distinguish between normal and tumor cells, advancing the understanding of DNA-guided nanozyme behavior and their biosensing capabilities.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!