Growth and stratification of epithelial cells in minimal culture conditions.

Methods Mol Biol

Department of Experimental Medicine, Histology and Embryology Unit, University of Pavia, Pavia, Italy.

Published: January 2010

Biological risk management is required in modern tissue engineering. Particular attention should be paid to the culture medium and the scaffold used. In this perspective, it is important to define minimal culture conditions which allow proper growth and differentiation of epithelial cells in vitro. We propose a simple experimental system which permits the generation of three-dimensional epidermal constructs using a collagen layer as a scaffold mimicking the entire dermal tissue and without the need of any feeder layer. Although showing significant differences compared to natural epidermis, these epidermal constructs appear useful to study keratinocyte differentiation and epidermis histogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-60761-380-0_3DOI Listing

Publication Analysis

Top Keywords

epithelial cells
8
minimal culture
8
culture conditions
8
epidermal constructs
8
growth stratification
4
stratification epithelial
4
cells minimal
4
conditions biological
4
biological risk
4
risk management
4

Similar Publications

Extracellular vesicles-a new player in the development of urinary bladder cancer.

Ther Adv Med Oncol

January 2025

Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.

Bladder cancer was the 10th most commonly diagnosed cancer worldwide in 2020. Extracellular vesicles (EVs) are nano-sized membranous structures secreted by all types of cells into the extracellular space. EVs can transport proteins, lipids, or nucleic acids to specific target cells.

View Article and Find Full Text PDF

Introduction: Primary cilia play an important role in the development of cancer by regulating signaling pathways. Several studies have demonstrated that women with mutations have, on average, 50% fewer ciliated cells compared with general women. However, the role of tubal cilia loss in the development of epithelial ovarian cancer (EOC) remains unclear.

View Article and Find Full Text PDF

A simple, economical, and high-yield method for polyethylene glycol-based extraction of follicular and serum-derived extracellular vesicles.

Tzu Chi Med J

October 2024

Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.

Objectives: The optimization of polyethylene glycol (PEG)-based extracellular vesicles (EVs) extraction from human follicular fluid (FF) and serum was investigated, and their functional analysis was confirmed. The PEG-based EV results were compared to the ExoQuick (ExoQ)-based EV.

Materials And Methods: FF-EVs and serum-EVs were extracted by using different concentrations of PEG (8000).

View Article and Find Full Text PDF

Fine particulate matter (PM), an atmospheric pollutant that settles deep in the respiratory tract, is highly harmful to human health. Despite its well-known impact on lung function and its ability to exacerbate asthma, the molecular basis of this effect is not fully understood. This integrated transcriptomic and epigenomic data analysis from publicly available datasets aimed to determine the impact of PM exposure and its association with asthma in human airway epithelial cells.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is a major contributor to morbidity and mortality in infants. We developed an in vitro model of human respiratory infection to study cellular immune responses to RSV in infants, children, and adults. The model includes human lung epithelial A549 cells or human fetal lung fibroblasts infected with a clinical strain of RSV at a multiplicity of infection of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!