Side-coupled cavity model for surface plasmon-polariton transmission across a groove.

Opt Express

Geballe Laboratory for Advanced Materials, Stanford, California 94305, USA.

Published: September 2009

We demonstrate that the transmission properties of surface plasmon-polaritons (SPPs) across a rectangular groove in a metallic film can be described by an analytical model that treats the groove as a side-coupled cavity to propagating SPPs on the metal surface. The coupling efficiency to the groove is quantified by treating it as a truncated metal-dielectric-metal (MDM) waveguide. Finite-difference frequency-domain (FDFD) simulations and mode orthogonality relations are employed to derive the basic scattering coefficients that describe the interaction between the relevant modes in the system. The modeled SPP transmission and reflection intensities show excellent agreement with full-field simulations over a wide range of groove dimensions, validating this intuitive model. The model predicts the sharp transmission minima that occur whenever an incident SPP resonantly couples to the groove. We also for the first time show the importance of evanescent, reactive MDM SPP modes to the transmission behavior. SPPs that couple to this mode are resonantly enhanced upon reflection from the bottom of the groove, leading to high field intensities and sharp transmission minima across the groove. The resonant behavior exhibited by the grooves has a number of important device applications, including SPP mirrors, filters, and modulators.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.17.017837DOI Listing

Publication Analysis

Top Keywords

side-coupled cavity
8
groove
8
sharp transmission
8
transmission minima
8
transmission
6
model
4
cavity model
4
model surface
4
surface plasmon-polariton
4
plasmon-polariton transmission
4

Similar Publications

We propose two types of structures to achieve the control of Fano and electromagnetically induced transparency (EIT) line shapes, in which dual one-dimensional (1D) photonic crystal nanobeam cavities (PCNCs) are side-coupled to a bus waveguide with different gaps. For the proposed type Ⅰ and type Ⅱ systems, the phase differences between the nanobeam periodic structures of the two cavities are and 0, respectively. The whole structures are theoretically analyzed via the coupled mode theory and numerically demonstrated using the three-dimensional finite-difference time-domain (3D FDTD) method.

View Article and Find Full Text PDF

Optical biosensors based on plasmonic nanostructures have attracted great interest due to their ability to detect small refractive index changes with high sensitivity. In this work, a novel plasmonic coupled cavity waveguide is proposed for refractive index sensing applications. The structure consists of a metal-insulator-metal waveguide side coupled to an array of asymmetric H-shape element, designed to provide dual-band resonances.

View Article and Find Full Text PDF

In this work, a plasmonic sensor based on metal-insulator-metal (MIM) waveguide for temperature sensing application is numerically investigated via finite element method (FEM). The resonant cavity filled with PDMS polymer is side-coupled to the MIM bus waveguide. The sensitivity of the proposed device is ~ - 0.

View Article and Find Full Text PDF

In this paper, quasi-Tamm plasmon polaritons (TPPs)/Fano resonance systems based on metal-dielectric-metal (MDM) waveguides are proposed. TPPs are surface electromagnetic modes formed at the interface between a metal and a one-dimensional dielectric photonic crystal (PhC). A metal plasmonic Bragg reflector (PBR) in a MDM waveguide is equivalent to a dielectric PhC, which is realized by periodic MDM waveguide width modulation and leads to the photonic bandgap.

View Article and Find Full Text PDF

High Q-factor reconfigurable microresonators induced in side-coupled optical fibres.

Light Sci Appl

August 2023

Aston Institute of Photonic Technologies, Aston University, Birmingham, B4 7ET, UK.

High Q-factor monolithic optical microresonators found numerous applications in classical and quantum optical signal processing, microwave photonics, ultraprecise sensing, as well as fundamental optical and physical sciences. However, due to the solid structure of these microresonators, attaining the free spectral range tunability of most of them, critical for several of these applications, was, so far, unfeasible. To address this problem, here we experimentally demonstrate that the side-coupling of coplanar bent optical fibres can induce a high Q-factor whispering gallery mode optical microresonator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!