We present the results of an in-depth experimental investigation about all-optical wavelength conversion of a 100-Gb/s polarization-multiplexed (POLMUX) signal. Each polarization channel is modulated at 25 Gbaud by differential quadrature phase-shift keying (DQPSK). The conversion is realized exploiting the high nonlinear chi((2)) coefficient of a periodically poled lithium niobate waveguide, in a polarization-independent configuration. We find that slight non-idealities in the polarization independent setup of the wavelength converter can significantly impair the performance of POLMUX systems. We show that high-quality wavelength conversion can be nevertheless achieved for both the polarization channels, provided that an accurate optimization of the setup is performed. This is the first demonstration, to the best of our knowledge, of the possibility to obtain penalty-free all-optical wavelength conversion in a 100-Gb/s POLMUX transmission system using direct-detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.17.017758 | DOI Listing |
Beilstein J Nanotechnol
January 2025
Department for Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Str. 2a, 5020 Salzburg, Austria.
The scales of the gold-dust weevil are green because of three-dimensional diamond-type chitin-air photonic crystals with an average periodicity of about 430 nm and a chitin fill fraction of about 0.44. A single scale usually contains one to three crystallites with different lattice orientations.
View Article and Find Full Text PDFNanoscale Adv
December 2024
Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
In an effort to meet the high demand for silver nanostructures in both research and consumer applications, we devise a simple and readily scaleable photochemical method through which silver nanostructures of varying morphologies, sizes, and optical properties can be synthesized using batch and flow photochemical strategies. For the latter we build upon the application of a wrapped-lamp photochemical flow system recently developed by our group to enable sequential irradiation with several wavelengths of LEDs in series in an approach that we describe as "plasmon pushing". We find that this strategy can accelerate the conversion of silver nanoparticle seeds to decahedral and triangular nanostructures, and that with it we have control over the tuning of the size and optical properties of triangular nanostructures in the red and near-IR regions.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka, Japan.
In this study, we experimentally demonstrate a PPLN-based free-space to SMF (single-mode fiber) conversion system capable of efficient long-wavelength down-conversion from 518 nm, optimized for minimal loss in highly turbid water, to 1540 nm, which is ideal for low-loss transmission in standard SMF. Leveraging the nonlinear optical properties of periodically poled lithium niobate (PPLN), we achieve a wavelength conversion efficiency of 1.6% through difference frequency generation while maintaining a received optical signal-to-noise ratio of 10.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA.
The effect of residual stress or heat on ferroelectrics used to convert photons into electricity was investigated. The data analysis reveals that when the PET-PZT piezoelectric transducer is UV-irradiated with a 405 nm wavelength, it becomes a photon-heat-stress electric energy converter and capacitator. Our objective was to evaluate the PET-PZT photon-heat-stress electric energy conversion performance and the role of the light's wavelength and intensity.
View Article and Find Full Text PDFCells
December 2024
Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria.
Laser-induced photothermal therapy using gold nanoparticles (AuNPs) has emerged as a promising approach to cancer therapy. However, optimizing various laser parameters is critical for enhancing the photothermal conversion efficacy of plasmonic nanomaterials. In this regard, the present study investigates the photothermal effects of dodecanethiol-stabilized hydrophobic ultrasmall spherical AuNPs (TEM size 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!