We describe the thermal tuning of air-core Bragg waveguides, fabricated by controlled formation of delamination buckles within a multilayer stack of chalcogenide glass and polymer. The upper cladding mirror is a flexible membrane comprising high thermal expansion materials, enabling large tuning of the air-core dimensions for small changes in temperature. Measurements on the temperature dependence of feature heights showed good agreement with theoretical predictions. We applied this mechanism to the thermal tuning of modal cutoff conditions in waveguides with a tapered core profile. Due to the omnidirectional nature of the cladding mirrors, these tapers can be viewed as waveguide-coupled, tunable Fabry-Perot filters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.17.017369 | DOI Listing |
Phys Chem Chem Phys
January 2025
Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France.
An accurate potential energy model, explicitly designed for studying scattering and treating the spin-orbit and nonadiabatic couplings on an equal footing, is proposed for the S + Ar system. The model is based on the Effective Relativistic Coupling by Asymptotic Representation (ERCAR) approach, building the geometry dependence of the spin-orbit interaction a diabatisation scheme. The resulting full diabatic model is used in close-coupling calculations to compute inelastic scattering cross sections for de-excitation from the S(D) fine structure level into the P multiplet.
View Article and Find Full Text PDFChem Sci
January 2025
BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University Chengdu Sichuan 610065 China
Single-atom catalysts (SACs) dispersed on support materials exhibit exceptional catalytic properties that can be fine-tuned through interactions between the single atoms and the support. However, selectively controlling the spatial location of single metal atoms while simultaneously harmonizing their coordination environment remains a significant challenge. Here, we present a phenolic-mediated interfacial anchoring (PIA) strategy to prepare SACs with Fe single atoms anchored on the surface of heteroatom-doped carbon nanospheres.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan.
Control of the formation of liquid crystalline 3̄ gyroid phases and their nanostructures is critical to advance materials chemistry based on the structural feature of three-dimensional helical networks. Here, we present that introducing methyl side-group(s) and slight non-symmetry into aryloyl-hydrazine-based molecules is unexpectedly crucial for their formation and can be a new design strategy through tuning intermolecular interactions: the two chemical modifications in the core portion of the chain-core-chain type molecules effectively lower and extend the 3̄ phase temperature ranges with the increased twist angle between neighboring molecules along the network. The detailed analyses of the aggregation structure revealed the change in the core assembly mode from the double-layered core mode of the mother molecule (without methyl groups) to the single-layered core mode.
View Article and Find Full Text PDFPresented is an O-band silicon photonics dual-polarization coherent/IMDD modulator integrated with semiconductor optical amplifiers and tunable laser to enhance the short-reach link budget. The laser demonstrated output power >6 dBm and a <250 kHz linewidth over a 14 nm tuning range. Modulators paired with custom 64 Gbaud QPSK drivers exhibited improved analog link sensitivity compared to similar devices without integrated gain sections.
View Article and Find Full Text PDFWe propose and demonstrate a compact on-chip optical spectrometer by integrating a tunable micro-ring resonator (MRR) with a 4-channel wavelength demultiplexer (DEMUX) based on a Mach-Zehnder interferometer (MZI) lattice filter. The MRR with a 3-dB bandwidth of 0.15 nm ensures the high resolution of the spectrometer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!