Thermal tuning of hollow waveguides fabricated by controlled thin-film buckling.

Opt Express

ECE Dept. and TRLabs, University of Alberta, 2nd Floor, 9107-116 St. N.W., Edmonton, AB, Canada, T6G 2V4.

Published: September 2009

We describe the thermal tuning of air-core Bragg waveguides, fabricated by controlled formation of delamination buckles within a multilayer stack of chalcogenide glass and polymer. The upper cladding mirror is a flexible membrane comprising high thermal expansion materials, enabling large tuning of the air-core dimensions for small changes in temperature. Measurements on the temperature dependence of feature heights showed good agreement with theoretical predictions. We applied this mechanism to the thermal tuning of modal cutoff conditions in waveguides with a tapered core profile. Due to the omnidirectional nature of the cladding mirrors, these tapers can be viewed as waveguide-coupled, tunable Fabry-Perot filters.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.17.017369DOI Listing

Publication Analysis

Top Keywords

thermal tuning
12
waveguides fabricated
8
fabricated controlled
8
tuning air-core
8
thermal
4
tuning hollow
4
hollow waveguides
4
controlled thin-film
4
thin-film buckling
4
buckling describe
4

Similar Publications

Electronic quenching of sulfur induced by argon collisions.

Phys Chem Chem Phys

January 2025

Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France.

An accurate potential energy model, explicitly designed for studying scattering and treating the spin-orbit and nonadiabatic couplings on an equal footing, is proposed for the S + Ar system. The model is based on the Effective Relativistic Coupling by Asymptotic Representation (ERCAR) approach, building the geometry dependence of the spin-orbit interaction a diabatisation scheme. The resulting full diabatic model is used in close-coupling calculations to compute inelastic scattering cross sections for de-excitation from the S(D) fine structure level into the P multiplet.

View Article and Find Full Text PDF

Surface immobilization of single atoms on heteroatom-doped carbon nanospheres through phenolic-mediated interfacial anchoring for highly efficient biocatalysis.

Chem Sci

January 2025

BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University Chengdu Sichuan 610065 China

Single-atom catalysts (SACs) dispersed on support materials exhibit exceptional catalytic properties that can be fine-tuned through interactions between the single atoms and the support. However, selectively controlling the spatial location of single metal atoms while simultaneously harmonizing their coordination environment remains a significant challenge. Here, we present a phenolic-mediated interfacial anchoring (PIA) strategy to prepare SACs with Fe single atoms anchored on the surface of heteroatom-doped carbon nanospheres.

View Article and Find Full Text PDF

Methyl side-groups control the 3̄ phase in core-non-symmetric aryloyl-hydrazine-based molecules.

Phys Chem Chem Phys

January 2025

Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan.

Control of the formation of liquid crystalline 3̄ gyroid phases and their nanostructures is critical to advance materials chemistry based on the structural feature of three-dimensional helical networks. Here, we present that introducing methyl side-group(s) and slight non-symmetry into aryloyl-hydrazine-based molecules is unexpectedly crucial for their formation and can be a new design strategy through tuning intermolecular interactions: the two chemical modifications in the core portion of the chain-core-chain type molecules effectively lower and extend the 3̄ phase temperature ranges with the increased twist angle between neighboring molecules along the network. The detailed analyses of the aggregation structure revealed the change in the core assembly mode from the double-layered core mode of the mother molecule (without methyl groups) to the single-layered core mode.

View Article and Find Full Text PDF

Presented is an O-band silicon photonics dual-polarization coherent/IMDD modulator integrated with semiconductor optical amplifiers and tunable laser to enhance the short-reach link budget. The laser demonstrated output power >6 dBm and a <250 kHz linewidth over a 14 nm tuning range. Modulators paired with custom 64 Gbaud QPSK drivers exhibited improved analog link sensitivity compared to similar devices without integrated gain sections.

View Article and Find Full Text PDF

We propose and demonstrate a compact on-chip optical spectrometer by integrating a tunable micro-ring resonator (MRR) with a 4-channel wavelength demultiplexer (DEMUX) based on a Mach-Zehnder interferometer (MZI) lattice filter. The MRR with a 3-dB bandwidth of 0.15 nm ensures the high resolution of the spectrometer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!