Growth hormone (GH) is a major metabolic regulator that functions by stimulating lipolysis, preventing protein catabolism, and decreasing insulin-dependent glucose disposal. Modulation of hepatic sensitivity to GH and the downstream effects on the GH/IGF1 axis are important events in the regulation of metabolism in response to variations in food availability. For example, during periods of reduced nutrient availability, the liver becomes resistant to GH actions. However, the mechanisms controlling hepatic GH resistance are currently unknown. Here, we investigated the role of 2 tetraspanning membrane proteins, leptin receptor overlapping transcript (LEPROT; also known as OB-RGRP) and LEPROT-like 1 (LEPROTL1), in controlling GH sensitivity. Transgenic mice expressing either human LEPROT or human LEPROTL1 displayed growth retardation, reduced plasma IGF1 levels, and impaired hepatic sensitivity to GH, as measured by STAT5 phosphorylation and Socs2 mRNA expression. These phenotypes were accentuated in transgenic mice expressing both proteins. Moreover, gene silencing of either endogenous Leprot or Leprotl1 in H4IIE hepatocytes increased GH signaling and enhanced cell-surface GH receptor. Importantly, we found that both LEPROT and LEPROTL1 expression were regulated in the mouse liver by physiologic and pathologic changes in glucose homeostasis. Together, these data provide evidence that LEPROT and LEPROTL1 influence liver GH signaling and that regulation of the genes encoding these proteins may constitute a molecular link between nutritional signals and GH actions on body growth and metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786784 | PMC |
http://dx.doi.org/10.1172/JCI34997 | DOI Listing |
J Clin Med
June 2021
Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Kraków, Poland.
The identification of novel molecular markers and the development of cancer treatment strategies are very important as cancer incidence is still very high. Obesity can contribute to cancer progression, including endometrial cancer. Adipocytes secrete leptin, which, when at a high level, is associated with an increased risk of cancer.
View Article and Find Full Text PDFJCI Insight
May 2018
Université de Lille, U1011 - EGID, F-59000 Lille, France.
Metabolic stresses such as dietary energy restriction or physical activity exert beneficial metabolic effects. In the liver, endospanin-1 and endospanin-2 cooperatively modulate calorie restriction-mediated (CR-mediated) liver adaptations by controlling growth hormone sensitivity. Since we found CR to induce endospanin protein expression in skeletal muscle, we investigated their role in this tissue.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
March 2018
Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.
Context: Plasma soluble leptin receptor (sOb-R) seems protective of gestational and type 2 diabetes in observational studies, but the mechanisms are unknown. sOb-R is formed by ectodomain shedding of membrane-bound leptin receptors (Ob-Rs), but its associations with messenger RNA (mRNA) expression are scarcely explored.
Objective: To explore associations between plasma levels of sOb-R and (1) insulin sensitivity, (2) mRNA pathways in adipose tissue and skeletal muscle, and (3) mRNA of candidate genes for sOb-R generation in adipose tissue and skeletal muscle.
J Biol Chem
September 2013
Section of Endocrinology and Diabetes, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, Pennsylvania 19134. Electronic address:
During calorie restriction in mice, increased expression of FGF21 causes growth attenuation and growth hormone (GH) insensitivity. Previous evidence also indicates that fasting-associated increased expression of leptin receptor overlapping transcript (LEPROT) and LEPROT-like 1 (LEPROTL1) (two proteins that regulate intracellular protein trafficking) reduces GH receptor cell-surface expression in the liver. Thus, we hypothesized that FGF21 causes GH insensitivity through regulation of LEPROT and/or LEPROTL1 expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!