All organisms need to ensure that no DNA segments are rereplicated in a single cell cycle. Eukaryotes achieve this through a process called origin licensing, which involves tight spatiotemporal control of the assembly of prereplicative complexes (pre-RCs) onto chromatin. Cdt1 is a key component and crucial regulator of pre-RC assembly. In higher eukaryotes, timely inhibition of Cdt1 by Geminin is essential to prevent DNA rereplication. Here, we address the mechanism of DNA licensing inhibition by Geminin, by combining X-ray crystallography, small-angle X-ray scattering, and functional studies in Xenopus and mammalian cells. Our findings show that the Cdt1:Geminin complex can exist in two distinct forms, a "permissive" heterotrimer and an "inhibitory" heterohexamer. Specific Cdt1 residues, buried in the heterohexamer, are important for licensing. We postulate that the transition between the heterotrimer and the heterohexamer represents a molecular switch between licensing-competent and licensing-defective states.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2775996PMC
http://dx.doi.org/10.1073/pnas.0905281106DOI Listing

Publication Analysis

Top Keywords

quaternary structure
4
structure human
4
human cdt1-geminin
4
cdt1-geminin complex
4
complex regulates
4
dna
4
regulates dna
4
dna replication
4
licensing
4
replication licensing
4

Similar Publications

Atomistic Insights Into Interaction of Doxorubicin With DNA: From Duplex to Nucleosome.

J Comput Chem

January 2025

Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic.

Doxorubicin (DOX) is a widely used chemotherapeutic agent known for intercalating into DNA. However, the exact modes of DOX interactions with various DNA structures remain unclear. Using molecular dynamics (MD) simulations, we explored DOX interactions with DNA duplexes (dsDNA), G-quadruplex, and nucleosome.

View Article and Find Full Text PDF

Truncated hemoglobins (TrHbs) have an ancient origin and are widely distributed in microorganisms where they often serve roles other than dioxygen transport and storage. In extremophiles, these small heme proteins must have features that secure function under challenging conditions: at minimum, they must be folded, retain the heme group, allow substrates to access the heme cavity, and maintain their quaternary structure if present and essential. The genome of the obligate psychropiezophile Shewanella benthica strain KT99 harbors a gene for a TrHb belonging to a little-studied clade of globins (subgroup 2 of group N).

View Article and Find Full Text PDF

Determination of Cenozoic Sedimentary Structures Using Integrated Geophysical Surveys: A Case Study in the Hebei Plain, China.

Sensors (Basel)

January 2025

Laboratory of Geophysical EM Probing Technologies, Ministry of Natural Resources, Dongli, Tianjin 300300, China.

The strong multi-stage tectonic movement caused the northwest of the North China Plain to rise and the southeast to fall. The covering layer in the plain area was several kilometers thick. In addition to expensive drilling, it is difficult to obtain deep geological information through traditional geological exploration.

View Article and Find Full Text PDF

Four quaternary Zintl phase thermoelectric (TE) materials belonging to the BaEuZnSb ( = 0.02(1), 0.04(1), 0.

View Article and Find Full Text PDF

Manganese-based alloys with the composition MnFeZ (Z = Si, Al) have been extensively investigated in recent years due to their potential applications in spintronics. The MnFeSi alloy, prepared in the form of ingots, powders, or ribbons, exhibits either a cubic full-Heusler (2) structure, an inverse-Heusler (XA) structure, or a combination of both. In contrast, the MnFeAl alloy has so far been synthesized only in the form of ingots, featuring a primitive cubic (β-Mn type) structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!