Visual motion signals, which are initially extracted in parallel at multiple spatial frequencies, are subsequently integrated into a unified motion percept. Cross-frequency integration plays a crucial role when directional information conflicts across frequencies due to such factors as occlusion. We investigated the human observers' open-loop oculomotor tracking responses (ocular following responses, or OFRs) and the perceived motion direction in an idealized situation of occlusion-multiple-slits viewing (MSV)-in which a moving pattern is visible only through an array of slits. We also tested a more challenging viewing condition, contrast-alternating MSV (CA-MSV), in which the contrast polarity of the moving pattern alternates when it passes the slits. We found that changes in the distribution of the spectral content of the slit stimuli, introduced by variations of both the interval between the slits and the frame rate of the image stream, modulated the OFR and the reported motion direction in a rather complex manner. We show that those complex modulations could be explained by the weighted sum of the motion signal (motion contrast) of each spatiotemporal frequency. The estimated distribution of frequency weights (tuning maps) indicate that the cross-frequency integration of supra-threshold motion signals gives strong weight to low spatial frequency components (<0.25 cpd) for both OFR and motion perception. However, the tuning map estimated with the MSV stimuli were significantly different from those estimated with the CA-MSV (and from those measured in a more direct manner using grating stimuli), suggesting that inter-frequency interactions (e.g., interaction producing speed-dependent tuning) was involved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.00064.2009 | DOI Listing |
Nat Commun
January 2025
Department of Traffic Management School, People's Public Security University of China, Beijing, 100038, China.
The takeover issue, especially the setting of the takeover time budget, is a critical factor restricting the implementation and development of conditionally automated vehicles. The general fixed takeover time budget has certain limitations, as it does not take into account the driver's non-driving behaviors. Here, we propose an intelligent takeover assistance system consisting of all-round sensing gloves, a non-driving behavior identification module, and a takeover time budget determination module.
View Article and Find Full Text PDFISA Trans
January 2025
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China; Beijing Key Laboratory of Transformative High-end Manufacturing Equipment and Technology, Tsinghua University, Beijing, 100084, China. Electronic address:
Multi-axis contouring control is crucial for ultraprecision manufacturing industries, contributing to meeting the ever-increasingly stringent performance requirements. In this article, a novel contouring adaptive real-time iterative compensation (CARIC) method is proposed to achieve extreme multi-axis contouring accuracy, remarkable trajectory generalization, disturbance rejection, and parametric adaptation simultaneously. Specifically, control actions generated by CARIC consist of robust feedback, adaptive feedforward, and online trajectory compensation components.
View Article and Find Full Text PDFJMIR Form Res
January 2025
Department of Computer Science, University of California, Irvine, Irvine, CA, United States.
Background: Acute pain management is critical in postoperative care, especially in vulnerable patient populations that may be unable to self-report pain levels effectively. Current methods of pain assessment often rely on subjective patient reports or behavioral pain observation tools, which can lead to inconsistencies in pain management. Multimodal pain assessment, integrating physiological and behavioral data, presents an opportunity to create more objective and accurate pain measurement systems.
View Article and Find Full Text PDFACS Sens
January 2025
CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
Flexible pressure sensors are pivotal in advancing artificial intelligence, the Internet of Things (IoT), and wearable technologies. While microstructuring the functional layer of these sensors effectively enhances their performance, current fabrication methods often require complex equipment and time-consuming processes. Herein, we present a novel magnetization-induced self-assembly method to develop a magnetically grown microneedle array as a dielectric layer for flexible capacitive pressure sensors.
View Article and Find Full Text PDFAnal Chem
January 2025
ICGM, Univ. Montpellier, CNRS, ENSCM, 34000 Montpellier, France.
In this contribution, we apply our newly developed ball-milling platform, which combines Raman spectroscopy and thermal (IR) imaging, as well as acoustic and high-speed optical video recordings, to the synthesis and transformation of citric acid-isonicotinamide (1:2) cocrystal polymorphs in transparent PMMA jars. Particularly, we demonstrate how Raman, temperature, acoustic, and video data are complementary and enable detection and connection of chemical and physical events happening during ball-milling in a time-resolved manner. Importantly, we show that the formation of the three cocrystal polymorphs can be detected through acoustic analyses solely.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!