Compensatory regulation of Cav2.1 Ca2+ channels in cerebellar Purkinje neurons lacking parvalbumin and calbindin D-28k.

J Neurophysiol

Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA.

Published: January 2010

Ca(v)2.1 channels regulate Ca(2+) signaling and excitability of cerebellar Purkinje neurons. These channels undergo a dual feedback regulation by incoming Ca(2+) ions, Ca(2+)-dependent facilitation and inactivation. Endogenous Ca(2+)-buffering proteins, such as parvalbumin (PV) and calbindin D-28k (CB), are highly expressed in Purkinje neurons and therefore may influence Ca(v)2.1 regulation by Ca(2+). To test this, we compared Ca(v)2.1 properties in dissociated Purkinje neurons from wild-type (WT) mice and those lacking both PV and CB (PV/CB(-/-)). Unexpectedly, P-type currents in WT and PV/CB(-/-) neurons differed in a way that was inconsistent with a role of PV and CB in acute modulation of Ca(2+) feedback to Ca(v)2.1. Ca(v)2.1 currents in PV/CB(-/-) neurons exhibited increased voltage-dependent inactivation, which could be traced to decreased expression of the auxiliary Ca(v)beta(2a) subunit compared with WT neurons. Although Ca(v)2.1 channels are required for normal pacemaking of Purkinje neurons, spontaneous action potentials were not different in WT and PV/CB(-/-) neurons. Increased inactivation due to molecular switching of Ca(v)2.1 beta-subunits may preserve normal activity-dependent Ca(2+) signals in the absence of Ca(2+)-buffering proteins in PV/CB(-/-) Purkinje neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2807225PMC
http://dx.doi.org/10.1152/jn.00635.2009DOI Listing

Publication Analysis

Top Keywords

purkinje neurons
24
pv/cb-/- neurons
12
neurons
10
cav21
8
cerebellar purkinje
8
parvalbumin calbindin
8
calbindin d-28k
8
cav21 channels
8
ca2+-buffering proteins
8
currents pv/cb-/-
8

Similar Publications

Rare inherited diseases caused by mutations in the copper transporters (CTR1) or induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that produced a metabolic shift favoring glycolysis over oxidative phosphorylation.

View Article and Find Full Text PDF

Protocol for recording physiological signals from the human cerebellum using electroencephalography.

STAR Protoc

January 2025

Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY 10032, USA. Electronic address:

As Purkinje cells of the cerebellum have a very fast firing rate, techniques with high temporal resolution are required to capture cerebellar physiology. Here, we present a protocol to record physiological signals in humans using cerebellar electroencephalography (cEEG). We describe steps for electrode placement and recording.

View Article and Find Full Text PDF

Background: Christianson syndrome (CS) is an x-linked recessive neurodevelopmental and neurodegenerative condition characterized by severe intellectual disability, cerebellar degeneration, ataxia, and epilepsy. Mutations to the gene encoding NHE6 are responsible for CS, and we recently demonstrated that a mutation to the rat gene causes a similar phenotype in the spontaneous rat model, which exhibits cerebellar degeneration with motor dysfunction. In previous work, we used the PhP.

View Article and Find Full Text PDF

Paraneoplastic cerebellar degeneration (PCD) is an inflammatory autoimmune process caused by onconeural antibodies directed against cerebellar Purkinje cells. In most cases, prognosis is poor as disease progression leads to pancerebellar dysfunction and permanent neurological damage. Through this case report, we aim to highlight the clinical presentation, diagnostic process, and therapeutic implications associated with PCD secondary to SCLC.

View Article and Find Full Text PDF

Semaphorin 3A (Sema3A) is an axon guidance molecule, which is also abundant in the adult central nervous system (CNS), particularly in perineuronal nets (PNNs). PNNs are extracellular matrix structures that restrict plasticity. The cellular sources of Sema3A in PNNs are unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!