ESAT6 has recently been demonstrated to cause haemolysis and macrophage lysis. Our studies demonstrate that ESAT6 causes cytolysis of type 1 and type 2 pneumocytes. Both types of pneumocytes express membrane laminin, and ESAT6 exhibits dose-dependent binding to both cell types and to purified human laminin. While minimal ESAT6 was detected on the surface of Mycobacterium tuberculosis grown in vitro, exogenously provided ESAT6 specifically associated with the bacterial cell surface, and the bacterium-associated ESAT6 retained its cytolytic ability. esat6 transcripts were upregulated approximately 4- to approximately 13-fold in bacteria replicating in type 1 cells, and approximately 3- to approximately 5 fold in type 2 cells. In vivo, laminin is primarily concentrated at the basolateral surface of pneumocytes where they rest on the basement membrane, which is composed primarily of laminin and collagen. The upregulation of esat6 transcripts in bacteria replicating in pneumocytes, the specific association of ESAT6 with the bacterial surface, the binding of ESAT6 to laminin and the lysis of pneumocytes by free and bacterium-associated ESAT6 together suggest a scenario wherein Mycobacterium tuberculosis replicating in pneumocytes may utilize surface ESAT6 to anchor onto the basolateral laminin-expressing surface of the pneumocytes, and damage the cells and the basement membrane to directly disseminate through the alveolar wall.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2846543PMC
http://dx.doi.org/10.1111/j.1365-2958.2009.06959.xDOI Listing

Publication Analysis

Top Keywords

esat6
13
mycobacterium tuberculosis
8
bacterium-associated esat6
8
esat6 transcripts
8
bacteria replicating
8
type cells
8
surface pneumocytes
8
basement membrane
8
replicating pneumocytes
8
pneumocytes
7

Similar Publications

Tuberculosis (TB) remains a significant global health challenge, latently affecting around a quarter of the global population. The sole licensed TB vaccine, Mycobacterium bovis Bacillus Calmette-Guérin (BCG), shows variable efficacy, particularly among adolescents and adults, underscoring the pressing need for more effective vaccination strategies. The administration route is crucial for vaccine efficacy, and administration via the skin, being rich in immune cells, may offer advantages over conventional subcutaneous routes, which lack direct access to abundant antigen-presenting cells.

View Article and Find Full Text PDF

Tuberculosis represents a significant menace to health, leading to millions of cases and fatalities each year. Traditional diagnostic methods, while effective, have limitations, necessitating improved tools. Aptamers possessing remarkable specificity single-stranded DNA or RNA molecules promising in TB diagnosis due to their adaptability and precise biomarker detection capabilities.

View Article and Find Full Text PDF

The combination of fusion proteins LT33 and LT28 induced strong protective immunity in mice.

Front Immunol

December 2024

State Key Laboratory for Animal Disease Control and Prevention and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.

Effective subunit vaccines for tuberculosis (TB) must target antigenic components at various stages of infection. In this study, we constructed fusion proteins using secreted antigens from (), specifically ESAT6, CFP10, MPT64, and Rv2645 from the proliferation stage, along with latency-associated antigens Rv1738 and Rv1978. The resulting fusion proteins, designated LT33 (ESAT6-CFP10-Rv1738) and LT28 (MPT64-Rv1978-Rv2645), were combined with an adjuvant containing dimethyldioctadecylammonium bromide (DDA), polyriboinosinic polyribocytidylic acid (PolyI:C), and cholesterol to construct subunit vaccines.

View Article and Find Full Text PDF
Article Synopsis
  • - Tuberculosis (TB) is a critical global health issue, and there's an urgent need for effective vaccines; CD8 T-cells, along with CD4 T-cells, are essential for fighting TB.
  • - The study investigates pH-sensitive liposomes as a delivery system for a multi-stage protein vaccine (Ag85b-ESAT6-Rv2034) against TB, aiming to enhance CD8 T-cell responses through improved antigen presentation.
  • - Results show that these liposomes are successfully taken up by immune cells and promote the activation of T-cells, indicating they could be promising candidates for developing effective TB vaccines.
View Article and Find Full Text PDF

analysis for the development of multi-epitope vaccines against .

Front Immunol

December 2024

Korea National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, Republic of Korea.

As Bacille Calmette-Guérin (BCG) vaccine's effectiveness is limited to only children, the development of new tuberculosis (TB) vaccines is being studied using several platforms, and a novel TB vaccine that overcomes this limitation is required. In this study, we designed an effective multi-epitope vaccine against using immunoinformatic analysis. First, we selected 11 highly antigenic proteins based on previous research: Ag85A, Ag85B, Ag85C, ESAT-6, MPT64, Rv2660c, TB10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!