Based on the five-orbital model, we study the effect of local impurity in iron pnictides, and find that the interband impurity scattering is promoted by the d-orbital degree of freedom. This fact means that the fully gapped sign-reversing s-wave state, which is predicted by spin fluctuation theories, is very fragile against impurities. In the BCS theory, only 1% impurities with intermediate strength induce huge pair breaking, resulting in the large in-gap state and prominent reduction in Tc, contrary to the prediction based on simple orbital-less models. The present study provides a stringent constraint on the pairing symmetry and the electronic states in iron pnictides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.103.177001 | DOI Listing |
Phys Rev Lett
July 2019
International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.
The absence of holelike Fermi pockets in the heavily electron-doped iron selenides (HEDISs) challenges the s_{±}-wave pairing originally proposed for iron pnictides, which consists of opposite signs of the gap function on electron and hole pockets. While the HEDIS compounds have been investigated extensively, a consistent description of the superconducting pairing therein is still lacking. Here, by in situ scanning tunneling spectroscopy and theoretical calculations, we study the effects of strong scatterings from nonmagnetic Pb adatoms on the epitaxially grown HEDIS, one-unit-cell FeSe/SrTiO_{3}(001).
View Article and Find Full Text PDFSci Rep
May 2016
Institute for Theoretical Solid State Physics, IFW Dresden, D-01069 Dresden, Germany.
We develop a phenomenological theory to predict the characteristic features of the momentum-dependent scattering amplitude in resonant inelastic x-ray scattering (RIXS) at the energy scale of the superconducting gap in iron-based super-conductors. Taking into account all relevant orbital states as well as their specific content along the Fermi surface we evaluate the charge and spin dynamical structure factors for the compounds LaOFeAs and LiFeAs, based on tight-binding models which are fully consistent with recent angle-resolved photoemission spectroscopy (ARPES) data. We find a characteristic intensity redistribution between charge and spin dynamical structure factors which discriminates between sign-reversing and sign-preserving quasiparticle excitations.
View Article and Find Full Text PDFPhys Rev Lett
June 2011
Department of Physics, Chonnam National University, Kwangju 500-757, Republic of Korea.
Phys Rev Lett
October 2009
Department of Applied Physics, Nagoya University and JST, TRIP, Furo-cho, Nagoya 464-8602, Japan.
Based on the five-orbital model, we study the effect of local impurity in iron pnictides, and find that the interband impurity scattering is promoted by the d-orbital degree of freedom. This fact means that the fully gapped sign-reversing s-wave state, which is predicted by spin fluctuation theories, is very fragile against impurities. In the BCS theory, only 1% impurities with intermediate strength induce huge pair breaking, resulting in the large in-gap state and prominent reduction in Tc, contrary to the prediction based on simple orbital-less models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!