We demonstrate a magnetooptical trap (MOT) configuration which employs optical forces due to light scattering between electronically excited states of the atom. With the standard MOT laser beams propagating along the x and y directions, the laser beams along the z direction are at a different wavelength that couples two sets of excited states. We demonstrate efficient cooling and trapping of cesium atoms in a vapor cell and sub-Doppler cooling on both the red and blue sides of the two-photon resonance. The technique demonstrated in this work may have applications in background-free detection of trapped atoms, and in assisting laser cooling and trapping of certain atomic species that require cooling lasers at inconvenient wavelengths.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.103.173003 | DOI Listing |
Traditional magneto-optical traps are often bulky and complex, which limits their application in portable and scalable technologies. In this study, we propose a method for generating cold atoms using a transmission-grating-based magneto-optical trap (TGMOT). This approach addresses the limitations of traditional magneto-optical traps using a transmission-grating design that simplifies the optical configuration, allowing for efficient atom capture with a single incident beam.
View Article and Find Full Text PDFHigh-precision microwave spectroscopy has been used to measure the transition frequency of nS → nP (n is the principle quantum number) and further the quantum defect of nP states in a standard cesium magneto-optical trap. A microwave field with 30-μs duration coupling the nS → nP transition yields a narrow linewidth microwave spectroscopy with the linewidth approaching the Fourier limit. After carefully compensating the stray electric and magnetic field and using the diluted atomic gas, we extract improved quantum defects of nP state, δ(nP) = 3.
View Article and Find Full Text PDFRev Sci Instrum
November 2024
Department of Physics, University of California, Berkeley, California 94720, USA.
We generate an atomic beam of titanium (Ti) using a "Ti-ball" Ti-sublimation pump, which is a common getter pump used in ultrahigh vacuum systems. We show that the sublimated atomic beam can be optically pumped into the metastable 3d3(4F)4s a5F5 state, which is the lower energy level in a cycling optical transition that can be used for laser cooling. We measure the atomic density and transverse and longitudinal velocity distributions of the beam through laser fluorescence spectroscopy.
View Article and Find Full Text PDFWe demonstrate the formation of a complex, multi-wavelength, three-dimensional laser beam configuration with integrated metasurface (MS) optics. Our experiments support the development of a compact Sr optical-lattice clock, which leverages magneto-optical trapping at 461 nm and 689 nm without bulk free-space optics. We integrate six mm-scale metasurfaces on a fused silica substrate and illuminate them with light from optical fibers.
View Article and Find Full Text PDFJ Chem Phys
October 2024
CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, China.
The generation of cold molecules is an important topic in the field of cold atoms and molecules and has received relevant advanced research attention in ultracold chemistry, quantum computation, and quantum metrology. With a high atomic phase space density, optical dipole traps have been widely used to prepare, trap, and study cold molecules. In this work, Rb2 molecules were photoassociated in a magneto-optical trap to obtain a precise rovibrational spectrum, which provided accurate numerical references for the realization of multiple frequency photoassociation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!