We use the results of ultraprecise cold-atom-recoil experiments to constrain the form of the energy-momentum dispersion relation, a structure that is expected to be modified in several quantum-gravity approaches. Our strategy of analysis applies to the nonrelativistic (small speeds) limit of the dispersion relation, and is therefore complementary to an analogous ongoing effort of investigation of the dispersion relation in the ultrarelativistic regime using observations in astrophysics. For the leading correction in the nonrelativistic limit the exceptional sensitivity of cold-atom-recoil experiments remarkably allows us to set a limit within a single order of magnitude of the desired Planck-scale level, thereby providing the first example of Planck-scale sensitivity in the study of the dispersion relation in controlled laboratory experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.103.171302DOI Listing

Publication Analysis

Top Keywords

dispersion relation
20
energy-momentum dispersion
8
planck-scale sensitivity
8
cold-atom-recoil experiments
8
dispersion
5
relation
5
constraining energy-momentum
4
relation planck-scale
4
sensitivity cold
4
cold atoms
4

Similar Publications

Total population for a resource-limited single consumer model.

J Math Biol

January 2025

Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA.

In the past several decades, much attention has been focused on the effects of dispersal on total populations of species. In Zhang (EL 20:1118-1128, 2017), a rigorous biological experiment was performed to confirm the mathematical conclusion: Dispersal tends to enhance populations under a suitable hypothesis. In addition, mathematical models keeping track of resource dynamics in population growth were also proposed in Zhang (EL 20:1118-1128, 2017) to understand this remarkable phenomenon.

View Article and Find Full Text PDF

The best treatment method for reverse obliquity intertrochanteric fractures (ROIFs) is still under debate. Our team designed the modified proximal femoral nail (MPFN) specially for treating such fractures. The objective of this research was to introduce the MPFN device and compare the biomechanical properties with Proximal Femoral Nail Antirotation (PFNA) and InterTAN nail via finite element modelling.

View Article and Find Full Text PDF

Cardiac Implications in Dravet Syndrome: Can Electrocardiogram and Echocardiography Detect Hidden Risks?

Pediatr Neurol

January 2025

Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Pediatrics Research Group, Institut de Recerca Sant Pau (IR-Sant Pau), Barcelona, Spain; Pediatric Neurology Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.

Background: Dravet syndrome (DS) is a severe developmental and epileptic encephalopathy associated with loss-of-function variants in the SCN1A gene. Although predominantly expressed in the central nervous system, SCN1A is also expressed in the heart, suggesting a potential link between neuronal and cardiac channelopathies. Additionally, DS carries a high risk of sudden unexpected death in epilepsy (SUDEP).

View Article and Find Full Text PDF

Parkinson's disease (PD) is a common neurodegenerative condition that can lead to problems swallowing. Individuals living with PD may be unable to take medications orally for various reasons including acute or chronic dysphagia, non-PD related causes and being placed nil-by-mouth for elective reasons. This article outlines a five-step approach to managing an individual living with PD who is unable to take oral medication acutely.

View Article and Find Full Text PDF

Nanosuspension Innovations: Expanding Horizons in Drug Delivery Techniques.

Pharmaceutics

January 2025

Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.

Nanosuspensions (NS), with their submicron particle sizes and unique physicochemical properties, provide a versatile solution for enhancing the administration of medications that are not highly soluble in water or lipids. This review highlights recent advancements, future prospects, and challenges in NS-based drug delivery, particularly for oral, ocular, transdermal, pulmonary, and parenteral routes. The conversion of oral NS into powders, pellets, granules, tablets, and capsules, and their incorporation into film dosage forms to address stability concerns is thoroughly reviewed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!