We show how time-dependent magnetic fields lead to spin motive forces and spin drag in a spinor Bose gas. We propose to observe these effects in a toroidal trap and analyze this particular proposal in some detail. In the linear-response regime we define a transport coefficient that is analogous to the usual drag resistivity in electron bilayer systems. Because of Bose enhancement of atom-atom scattering, this coefficient strongly increases as temperature is lowered. We also investigate the effects of heating.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.103.170401 | DOI Listing |
Phys Rev Lett
December 2024
Department of Physics, University of Washington, Seattle, Washington 98195, USA.
We study hydrodynamic thermal transport in high-mobility two-dimensional electron systems placed in an in-plane magnetic field and identify a new mechanism of thermal magnetotransport. This mechanism is caused by drag between the electron populations with opposite spin polarization, which arises in the presence of a hydrodynamic flow of heat. In high mobility systems, spin drag results in strong thermal magnetoresistance, which becomes of the order of 100% at relatively small spin polarization of the electron liquid.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Institute of Micro/Nano Devices and Solar Cells, School of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China.
Sci Rep
November 2024
Department of Mechanical Engineering, Chang Gung University, Taipei, Taiwan.
The optomechanical motion of a gold nanoparticle (GNP) dimer-a pair of optically bound GNPs-in fluid, manipulated by a Bessel beam, is theoretically studied using the multiple multipole (MMP) method. Since a Bessel beam possesses orbital angular momentum (OAM) and spin angular momentum (SAM) simultaneously, complicated rigid-body motions of the dimer can be induced. The mechanism involves the equilibrium between the optical force with the reactive drag force exerted by the fluid.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2024
Department of Physics, State Key Laboratory of Low Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China.
Helicity-dependent photocurrent (HDPC) and its modulation in topological insulator BiTe nanowires have been investigated. It is revealed that when the incident plane of a laser is perpendicular to the nanowire, the HDPC is an odd function of the incident angle, which is mainly contributed by the circular photogalvanic effect originating from the surface states of BiTe nanowire. When the incident plane of a laser is parallel to the nanowire, the HDPC is approximately an even function of the incident angle, which is due to the circular photon drag effect coming from the surface states.
View Article and Find Full Text PDFLight Sci Appl
June 2024
State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China.
Terahertz (THz) emission spectroscopy (TES) has emerged as a highly effective and versatile technique for investigating the photoelectric properties of diverse materials and nonlinear physical processes in the past few decades. Concurrently, research on two-dimensional (2D) materials has experienced substantial growth due to their atomically thin structures, exceptional mechanical and optoelectronic properties, and the potential for applications in flexible electronics, sensing, and nanoelectronics. Specifically, these materials offer advantages such as tunable bandgap, high carrier mobility, wideband optical absorption, and relatively short carrier lifetime.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!