Hohlraum-driven mid-Z (SiO2) double-shell implosions on the omega laser facility and their scaling to NIF.

Phys Rev Lett

Lawrence Livermore National Laboratory, Livermore, California 94551, USA.

Published: October 2009

High-convergence, hohlraum-driven implosions of double-shell capsules using mid-Z (SiO2) inner shells have been performed on the OMEGA laser facility [T. R. Boehly, Opt. Commun. 133, 495 (1997)]. These experiments provide an essential extension of the results of previous low-Z (CH) double-shell implosions [P. A. Amendt, Phys. Rev. Lett. 94, 065004 (2005)] to materials of higher density and atomic number. Analytic modeling, supported by highly resolved 2D numerical simulations, is used to account for the yield degradation due to interfacial atomic mixing. This extended experimental database from OMEGA enables a validation of the mix model, and provides a means for quantitatively assessing the prospects for high-Z double-shell implosions on the National Ignition Facility [Paisner, Laser Focus World 30, 75 (1994)].

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.103.145003DOI Listing

Publication Analysis

Top Keywords

double-shell implosions
12
mid-z sio2
8
omega laser
8
laser facility
8
hohlraum-driven mid-z
4
double-shell
4
sio2 double-shell
4
implosions
4
implosions omega
4
facility scaling
4

Similar Publications

X-ray radiography is a ubiquitous diagnostic technique in high energy density (HED) physics, with point projection backlighting commonly used for characterizing static and dynamic objects at high spatial and temporal resolutions. These are typically constrained in attainable resolution by their decrease in brightness, which is a limiting factor for high-Z HED experiments, such as double-shell implosions at the National Ignition Facility (NIF) requiring MeV-scale bremsstrahlung sources at high (<50μm) resolution. Coded source imaging is a technique using multiple point-projection sources to produce multiple overlapping radiographs, which are then decoded as a function of the source positions in a process akin to coded aperture imaging.

View Article and Find Full Text PDF

The double-shell inertial confinement fusion campaign, which consists of an aluminum ablator, a foam cushion, a high-Z pusher (tungsten or molybdenum), and liquid deuterium-tritium (DT) fuel, aims for its first DT filled implosions on the National Ignition Facility (NIF) in 2024. The high-Z, high density pusher does not allow x-rays to escape the double-shell capsule. Therefore, nuclear diagnostics such as the Gamma Reaction History (GRH) diagnostic on the NIF are crucial for understanding high-Z implosion performance.

View Article and Find Full Text PDF

Implosion symmetry is a key requirement in achieving a robust burning plasma in inertial confinement fusion experiments. In double-shell capsule implosions, we are interested in the shape of the inner shell as it pushes on the fuel. Shape analysis is a popular technique for studying said symmetry during implosion.

View Article and Find Full Text PDF

In many inertial confinement fusion (ICF) experiments, the neutron yield and other parameters cannot be completely accounted for with one and two dimensional models. This discrepancy suggests that there are three dimensional effects that may be significant. Sources of these effects include defects in the shells and defects in shell interfaces, the fill tube of the capsule, and the joint feature in double shell targets.

View Article and Find Full Text PDF

In the Double Shell Inertial Confinement Fusion concept, characterizing the shape asymmetry of imploding metal shells is vital for understanding energy-efficient compression and radiative losses of the thermonuclear fuel. The Monte Carlo N-Particle MCNP code forward models radiography of Double Shell capsule implosions using the Advanced Radiographic Capability at the National Ignition Facility. A procedure is developed for using MCNP to reconstruct density profiles from the radiograph image intensity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!