Analytical small-time asymptotic properties of A+B-->C fronts.

Phys Rev E Stat Nonlin Soft Matter Phys

Center for Nonlinear Phenomena and Complex Systems, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium.

Published: October 2009

The small-time asymptotic properties of the reaction front formed by a reaction A+B-->C coupled to diffusion are considered. Reactants A and B are initially separately dissolved in two identical solvents. The solvents are brought into contact and the reactants meet through diffusion. The small-time asymptotic position of the center of mass of the reaction rate is obtained analytically. When one of the reactants diffuses much faster than the other reactant then the position of the local maximum in the reaction rate travels on a length scale related to the diffusion coefficient of the slowest diffusing reactant while the first moment of the reaction rate and the width of the reaction front are on a length scale related to the diffusion coefficient of the fastest diffusing reactant. If the sum of the initial reactant concentrations is fixed, then the fastest reaction rate is obtained when equal concentrations are used. The first-order solutions are analytically obtained, however, each solution involves an integral which requires numerical evaluation. Various small-time asymptotic analytical reaction front properties are obtained. In particular, one finds that the position of the center of mass of the product concentration distribution is initially located at three quarters of the position of the center of mass of the reaction rate.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.80.046118DOI Listing

Publication Analysis

Top Keywords

reaction rate
20
small-time asymptotic
16
reaction front
12
position center
12
center mass
12
reaction
9
asymptotic properties
8
mass reaction
8
length scale
8
scale diffusion
8

Similar Publications

Multi-omics sequencing of gastroesophageal junction adenocarcinoma reveals prognosis-relevant key factors and a novel immunogenomic classification.

Gastric Cancer

January 2025

Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.

Background: Gastroesophageal junction adenocarcinoma (GEJAC) exhibits distinct molecular characteristics due to its unique anatomical location. We sought to investigate effective and reliable molecular classification of GEJAC to guide personalized treatment.

Methods: We analyzed the whole genomic, transcriptomic, T-cell receptor repertoires, and immunohistochemical data in 92 GEJAC patients and delineated the landscape of genetic and immune alterations.

View Article and Find Full Text PDF

Context: This study investigates the reaction mechanism of luteolin with selenium dioxide in ethanol. Through a detailed search for transition states and thermodynamic energy calculations, it was found that the reaction proceeds via two possible pathways, leading to the formation of products P1 and P2, respectively. A common feature of both pathways is that the first elementary step results in the formation of the intermediate INT1.

View Article and Find Full Text PDF

Developing a novel TaqMan qPCR assay for optimizing Pullorum detection in chickens.

Vet Q

December 2025

Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.

Pullorum, the causative agent of pullorum disease, posing a significant threat to the global production of poultry meat and eggs. However, existing detection methods have substantial limitations in efficiency and accuracy. Herein, we developed a genomic deletion-targeted TaqMan qPCR assay for identification of Pullorum, enabling precise differentiation from other serovars.

View Article and Find Full Text PDF

Gas-phase and water-mediated mechanisms for the OCS + OH reaction.

Phys Chem Chem Phys

January 2025

Departamento de Físico-Química, Instituto de Química - Universidade Federal da Bahia, Rua Barão de Jeremoabo, 147, Salvador, Bahia, 40170-115, Brazil.

We report a computational study of the gas-phase and water-mediated mechanisms for the oxidation of carbonyl sulfide (OCS) by the hydroxyl radical. To achieve reliable results, we employ a dual-level strategy within interpolated single-point energies (VTST-ISPE) at the CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ level of theory. In the gas-phase mechanism, we have determined the rate constants by kinetic Monte Carlo simulation in the interval of temperatures of 250-550 K.

View Article and Find Full Text PDF

Achieving the smallest crystallite/particle size of zinc oxide nanoparticles (ZnO NPs) reported to date, measuring 5.2/12.41 nm with () leaf extract, this study introduces a facile green synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!