Renormalization group approach to oscillator synchronization.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Materials Science, California Institute of Technology, 1200 E California Boulevard, Pasadena, California 91125, USA.

Published: September 2009

We develop a renormalization group method to investigate synchronization clusters in a one-dimensional chain of nearest-neighbor coupled phase oscillators. The method is best suited for chains with strong disorder in the intrinsic frequencies and coupling strengths. The results are compared with numerical simulations of the chain dynamics and good agreement in several characteristics is found. We apply the renormalization group and simulations to Lorentzian distributions of intrinsic frequencies and couplings and investigate the statistics of the resultant cluster sizes and frequencies, as well as the dependence of the characteristic cluster length upon parameters of these Lorentzian distributions.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.80.036206DOI Listing

Publication Analysis

Top Keywords

renormalization group
12
intrinsic frequencies
8
lorentzian distributions
8
group approach
4
approach oscillator
4
oscillator synchronization
4
synchronization develop
4
develop renormalization
4
group method
4
method investigate
4

Similar Publications

Typical path integral Monte Carlo approaches use the primitive approximation to compute the probability density for a given path. In this work, we develop the pair discrete variable representation (pair-DVR) approach to study molecular rotations. The pair propagator, which was initially introduced to study superfluidity in condensed helium, is naturally well-suited for systems interacting with a pairwise potential.

View Article and Find Full Text PDF

Hybridization effects on the magnetic ground state of ruthenium in double perovskite LaZnRuTiO.

J Phys Condens Matter

January 2025

School of Materials Science, Indian Association for the Cultivation of Science, Calcutta 700 032, Kolkata, West Bengal, 700032, INDIA.

An exotic quantum mechanical ground state, i.e. the nonmagnetic= 0 state, has been predicted for higher transition metal tsystems, due to the influence of strong spin-orbit coupling (SOC) or in other words, due to unquenched orbital moment contribution.

View Article and Find Full Text PDF

Recently, robust d-wave superconductive (SC) order has been unveiled in the ground state of the 2D t-t^{'}-J model-with both nearest-neighbor (t) and next-nearest-neighbor (t^{'}) hoppings-by density matrix renormalization group studies. However, there is currently a debate on whether the d-wave SC holds up strong on both t^{'}/t>0 and t^{'}/t<0 cases for the t-t^{'}-J model, which correspond to the electron- and hole-doped sides of the cuprate phase diagram, respectively. Here, we exploit state-of-the-art thermal tensor network approach to accurately obtain the phase diagram of the t-t^{'}-J model on cylinders with widths up to W=6 and down to low temperature as T/J≃0.

View Article and Find Full Text PDF

We report spin-polarized scanning tunneling microscopy measurements of an Anderson impurity system in MoS_{2} mirror-twin boundaries, where both the quantum-confined impurity state and the Kondo resonance resulting from the interaction with the substrate are accessible. Using a spin-polarized tip, we observe magnetic-field-induced changes in the peak heights of the Anderson impurity states as well as in the magnetic-field-split Kondo resonance. Quantitative comparison with numerical renormalization group calculations provides evidence of the notable spin polarization of the spin-resolved impurity spectral function under the influence of a magnetic field.

View Article and Find Full Text PDF

In this work, we propose a path integral Monte Carlo approach based on discretized continuous degrees of freedom and rejection-free Gibbs sampling. The ground state properties of a chain of planar rotors with dipole-dipole interactions are used to illustrate the approach. Energetic and structural properties are computed and compared to exact diagonalization and numerical matrix multiplication for N ≤ 3 to assess the systematic Trotter factorization error convergence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!