Delocalization and spreading in a nonlinear Stark ladder.

Phys Rev E Stat Nonlin Soft Matter Phys

Max-Planck Institute for the Physics of Complex Systems, Nöthnitzer Str 38, 01187 Dresden, Germany.

Published: September 2009

We study the evolution of a wave packet in a nonlinear Stark ladder. In the absence of nonlinearity all normal modes are spatially localized giving rise to an equidistant eigenvalue spectrum and Bloch oscillations. Nonlinearity induces frequency shifts and mode-mode interactions and destroys localization. For large strength of nonlinearity we observe single-site trapping as a transient, with subsequent explosive spreading, followed by subdiffusion. For moderate nonlinearities an immediate subdiffusion takes place. Finally, for small nonlinearities we find linear Stark localization as a transient, with subsequent subdiffusion. For single-mode excitations and weak nonlinearities, stability intervals are predicted and observed upon variation in the dc bias strength, which affects the short- and the long-time dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.80.036201DOI Listing

Publication Analysis

Top Keywords

nonlinear stark
8
stark ladder
8
transient subsequent
8
delocalization spreading
4
spreading nonlinear
4
ladder study
4
study evolution
4
evolution wave
4
wave packet
4
packet nonlinear
4

Similar Publications

Hyperphosphorylated tau accumulation is seen in the noradrenergic locus coeruleus from the earliest stages of Alzheimer's disease onwards and has been associated with symptoms of agitation. It is hypothesized that compensatory locus coeruleus-noradrenaline system overactivity and impaired emotion regulation could underlie agitation propensity, but to our knowledge this has not previously been investigated. A better understanding of the neurobiological underpinnings of agitation would help the development of targeted prevention and treatment strategies.

View Article and Find Full Text PDF

Intersubband transitions in semiconductor heterostructures offer a way to achieve large and designable nonlinearities with dynamic modulation of intersubband energies through the Stark effect. One promising approach for incorporating these nonlinearities into free space optics is a nonlinear polaritonic metasurface, which derives resonant coupling between intersubband nonlinearities and optical modes in nanocavities. Recent work has shown efficient frequency mixing at low pumping intensities, with the ability to electrically tune the phase, amplitude, and spectral peak of it.

View Article and Find Full Text PDF
Article Synopsis
  • * Inversion symmetric systems are designed to create stable emission frequencies with less sensitivity to charge noise, although this can lead to nonlinear behavior and unwanted spectral fluctuations.
  • * The study demonstrates a two-dimensional control of the electric field to both fine-tune emission frequencies and reduce instability caused by field fluctuations in molecular quantum emitters at low temperatures.
View Article and Find Full Text PDF

MXenes are a family of two-dimensional (2D) materials with broad and varied applications in biology, materials science, photonics, and environmental remediation owing to their layered structure and high surface area-to-volume ratio. MXenes have exhibited significant nonlinear optical characteristics, which have been primarily explored in the context of photonics applications, yet the second-harmonic generation (SHG) behavior of MXenes remains an unexplored aspect of their optical properties. Herein, we demonstrate and quantify large second-order responses of 2D TiCT MXenes both in aqueous solutions and on a silicon substrate for the first time.

View Article and Find Full Text PDF

Electro-optically Modulated Nonlinear Metasurfaces.

Nano Lett

November 2024

The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Institute, Nankai University, Tianjin 300071, People's Republic of China.

Article Synopsis
  • Electrically reconfigurable nonlinear metasurfaces allow for dynamic control of second-harmonic generation (SHG), leading to innovative uses in signal processing, light switching, and sensing.
  • Traditional methods have limitations due to weak SHG responses in metals and constraints in quantum well systems.
  • A new approach using lithium niobate (LN) combines the electro-optic effect with SHG, achieving an 11.3% modulation depth, which enhances the potential for tunable nonlinear light sources and advanced photonic applications.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!