Investigating quantum transport with an initial value representation of the semiclassical propagator.

Phys Rev E Stat Nonlin Soft Matter Phys

Institut für Theoretische Physik, Technische Universität Dresden, 01062 Dresden, Germany.

Published: September 2009

Quantized systems whose underlying classical dynamics possess an elaborate mixture of regular and chaotic motion can exhibit rather subtle long-time quantum transport phenomena. In a short wavelength regime where semiclassical theories are most relevant, such transport phenomena, being quintessentially interference based, are difficult to understand with the system's specific long-time classical dynamics. Fortunately, semiclassical methods applied to wave packet propagation can provide a natural approach to understanding the connections, even though they are known to break down progressively as time increases. This is due to the fact that some long-time transport properties can be deduced from intermediate-time behavior. Thus, these methods need only retain validity and be carried out on much shorter time scales than the transport phenomena themselves in order to be valuable. The initial value representation of the semiclassical propagator of Herman and Kluk [Chem. Phys. 91, 27 (1984)] is heavily used in a number of molecular and atomic physics contexts, and is of interest here. It is known to be increasingly challenging to implement as the underlying classical chaos strengthens, and we ask whether it is possible to implement it well enough to extract the kind of intermediate-time information that reflects wave packet localization at long times. Using a system of two coupled quartic oscillators, we focus on the localizing effects of transport barriers formed by stable and unstable manifolds in the chaotic sea and show that these effects can be captured with the Herman-Kluk propagator.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.80.031101DOI Listing

Publication Analysis

Top Keywords

transport phenomena
12
quantum transport
8
initial representation
8
representation semiclassical
8
semiclassical propagator
8
underlying classical
8
classical dynamics
8
wave packet
8
transport
6
investigating quantum
4

Similar Publications

Nonlinear electron transport induced by polarized terahertz radiation is studied in two-dimensional tellurene at room temperature. A direct current, quadratic in the radiation's electric field, is observed. Contributions sensitive to radiation helicity and polarization orientation as well as polarization independent current are found.

View Article and Find Full Text PDF

When water is confined in a nanochannel, its thermodynamic and kinetic properties change dramatically compared to the macroscale. To investigate these phenomena, we conducted nonequilibrium molecular dynamics simulations on the heat transfer in copper-water nanochannels with lengths ranging from 12 to 20 nm in the absence and presence of an electric field. The results indicate that in the absence of an electric field ( = 12-20 nm), the binding force between water molecules in the 20 nm nanochannel is the weakest, facilitating thermal motion in the liquid phase.

View Article and Find Full Text PDF

Active enzymes during catalyzing chemical reactions, have been found to generate significant mechanical fluctuations, which can influence the dynamics of their surroundings. These phenomena open new avenues for controlling mass transport in complex and dynamically inhomogeneous environments through localized chemical reactions. To explore this potential, we studied the uptake of transferrin molecules in retinal pigment epithelium (RPE) cells via clathrin-mediated endocytosis.

View Article and Find Full Text PDF

Observation of quantum oscillations near the Mott-Ioffe-Regel limit in CaAs.

Natl Sci Rev

December 2024

State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China.

The Mott-Ioffe-Regel limit sets the lower bound of the carrier mean free path for coherent quasiparticle transport. Metallicity beyond this limit is of great interest because it is often closely related to quantum criticality and unconventional superconductivity. Progress along this direction mainly focuses on the strange-metal behaviors originating from the evolution of the quasiparticle scattering rate, such as linear-in-temperature resistivity, while the quasiparticle coherence phenomena in this regime are much less explored due to the short mean free path at the diffusive bound.

View Article and Find Full Text PDF

Maternal nutritional supplementation has a profound effect on the growth and development of offspring. FAM is produced by co-cultivation of Lactobacillus acidophilus and Bacillus subtilis and has been demonstrated to potentially alleviate diarrhea, improve growth performance and the intestinal barrier integrity of weaned piglets. This study aimed to explore how maternal FAM improves the reproductive performance through mother-infant microbiota, colostrum and placenta.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!