Disentangling the web of allosteric communication in a homotetramer: heterotropic inhibition in phosphofructokinase from Escherichia coli.

Biochemistry

Department of Biochemistry and Biophysics, Texas A&M University and Texas AgriLife Research, College Station, Texas 77843-2128, USA.

Published: December 2009

This study quantifies the contribution of each of the four unique inhibiting heterotropic interactions between the allosteric inhibitor, phosphoenolpyruvate (PEP), and the substrate, fructose 6-phosphate (Fru-6-P), in phosphofructokinase from Escherichia coli (EcPFK). The unique heterotropic interactions, previously labeled by the distances between ligand binding sites, were isolated independently by constructing hybrid tetramers. Of the four unique heterotropic PEP-Fru-6-P interactions, the 45 A interaction contributed 25%, the 30 A interaction contributed 31%, and the 23 A interaction contributed 42% of the total PEP inhibition. The 33 A interaction actually causes a small activation of Fru-6-P binding by PEP and therefore contributed -8% of the total observed PEP inhibition. The pattern of relative contribution to PEP inhibition from each interaction in EcPFK does not follow the same pattern seen in MgADP activation of EcPFK. This observation supports the conclusion that although PEP and MgADP bind to the same site, they do not use the same communication pathways to influence the active site. The pattern of relative contribution describing PEP inhibition observed in this study also does not follow the pattern determined for PEP inhibition in phosphofructokinase from Bacillus stearothermophilus, suggesting that these two highly homologous isoforms are not inhibited in the same manner by PEP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2797571PMC
http://dx.doi.org/10.1021/bi901456pDOI Listing

Publication Analysis

Top Keywords

pep inhibition
20
interaction contributed
12
pep
9
inhibition phosphofructokinase
8
phosphofructokinase escherichia
8
escherichia coli
8
heterotropic interactions
8
unique heterotropic
8
inhibition interaction
8
pattern relative
8

Similar Publications

Development of Synthetic Antimicrobial Peptides Based on Genomic Analysis of Streptococcus salivarius.

J Clin Lab Anal

January 2025

Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.

Background: In the oral environment, the production of bacteriocins or antimicrobial peptides (AMPs) plays a crucial role in maintaining ecological balance by impeding the proliferation of closely related microorganisms. This study aims to conduct in silico genome screening of Streptococcus salivarius to identify potential antimicrobial compounds existing as hypothetical peptides, with the goal of developing novel synthetic antimicrobial peptides.

Methods: Draft genomes of various oral Streptococcus salivarius strains were obtained from the NCBI database and subjected to analysis using bioinformatic tools, viz.

View Article and Find Full Text PDF

The actin cytoskeleton regulates danger-associated molecular pattern signaling and PEP1 RECEPTOR1 internalization.

Plant Physiol

January 2025

State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.

In plants, cytoskeletal proteins assemble into dynamic polymers that play numerous roles in diverse fundamental cellular processes, including endocytosis, vesicle trafficking, and the spatial distribution of organelles and protein complexes. Plant elicitor peptides (Peps) are damage/danger-associated molecular patterns (DAMPs) that are perceived by the receptor-like kinases PEP RECEPTOR 1 (PEPR1) and PEPR2 to enhance innate immunity and inhibit root growth in Arabidopsis (Arabidopsis thaliana). To date, however, there is little evidence that the actin cytoskeleton of the host cell participates in DAMP-induced innate immunity.

View Article and Find Full Text PDF

Hyaluronan Directs Alveolar Type II Cell Response to Acute Ozone Exposure in Mice.

Am J Respir Cell Mol Biol

January 2025

Duke Medicine, Medicine, Durham, North Carolina, United States.

Becoming more frequent due to climate change, ozone (O) exposures can cause lung injury. Alveolar type 2 (AT2) cells and hyaluronan (HA), a matrix component, are critical to repairing lung injury and restoring homeostasis. Here, we define the impact of HA on AT2 cells following acute O exposure.

View Article and Find Full Text PDF
Article Synopsis
  • Diabetes is a significant global health issue that involves high healthcare costs and complex treatments, leading to the search for new medication options due to the side effects of current therapies.
  • Glucokinase (GK) plays a crucial role in regulating blood sugar levels and has unique properties that make it a good target for type-2 diabetes treatment; glucokinase activators (GKAs) can enhance GK activity, but safety concerns persist with existing options.
  • A study developed a new type of GKA using peptide-based compounds with unique amino acids, discovering three promising peptides that increase GK activity significantly; machine learning techniques were also employed to predict their effectiveness.
View Article and Find Full Text PDF

Despite all debates about its safe use, glyphosate remains the most widely applied active ingredient in herbicide products, with renewed approval in the European Union until 2033. Non-target organisms are commonly exposed to glyphosate as a matter of its mode of application, with its broader environmental and biological impacts remaining under investigation. Glyphosate displays structural similarity to phosphoenolpyruvate (PEP), thereby competitively inhibiting the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), crucial for the synthesis of aromatic amino acids in plants, fungi, bacteria, and archaea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!