In the preceding article, the hydration energies of Zn(2+)(H(2)O)(n) complexes, where n = 6-10, were measured using threshold collision-induced dissociation (CID) in a guided ion beam tandem mass spectrometer (GIBMS) coupled with an electrospray ionization (ESI) source. The present investigation explores the charge-separation processes observed, Zn(2+)(H(2)O)(n) --> ZnOH(+)(H(2)O)(m) + H(+)(H(2)O)(n-m-1), and the competition between this process and the loss of water. Our results demonstrate that charge-separation processes occur at variable complex sizes of n = 6, 7, and 8, prompting a redefinition of the critical size for charge separation. Experimental kinetic energy-dependent cross sections are analyzed to yield 0 K threshold energies for the charge-separation products and the effects of competition with this channel on the energies for losing one and two water ligands after accounting for multiple collisions, kinetic shifts, and energy distributions. A complete reaction coordinate is calculated for the n = 7 complex dissociating into ZnOH(+)(H(2)O)(3) + H(+)(H(2)O)(3). Calculated rate-limiting transition states for n = 6-8 are also compared to experimental threshold measurements for the charge-separation processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp906241q | DOI Listing |
Small
January 2025
College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, China.
Although the design of photocatalysts incorporating donor-acceptor units has garnered significant attention for its potential to enhance the efficiency of the photocatalysis process, the primary bottleneck lies in the challenge of generating long-lived charge separation states during exciton separation. Therefore, a novel Janus-nanomicelles photocatalyst is developed using carbazole (Cz) as the donor unit, perylene-3,4,9,10-tetracarboxydiimide (PDI) with long-excited state as the acceptor unit and polyethylene glycol (PEG) as the hydrophilic segment through ROMP polymerization. After optimizing the ratio, Cz-PDI-PEG rapidly adsorbs bisphenol A (BPA) within 10 s through π-π interaction, hydrogen-bonding interaction, and hydrophobic interaction between BPA and hydrophobic blocks when exposed to aqueous humor and efficiently photodegrades BPA (50 ppm) within 120 min for water purification purposes due to its long-lived charge separation state and achieving the highest reported efficiency so far.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
School of Marine Science and Engineering, Hainan University, Haikou, China.
Severe photogenerated charge carrier recombination involved in photocatalytic CO reduction leads to low photocatalytic efficiency. Here we demonstrate that a chiral hierarchical structure could facilitate charge separation in BiOBr, thus suppressing charge recombination and enhancing photocatalytic performance. Chiral helical flower-like BiOBr nanospheres were prepared a D/L-sorbitol-assisted hydrothermal process, exhibiting a 1.
View Article and Find Full Text PDFSci Rep
January 2025
Physics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
The pulp and paper manufacturing wastewater is as complicated as any other industrial effluent. A promising approach to treating water is to combine photocatalysis and membrane processes. This paper demonstrates a novel photocatalytic membrane technique for solar-powered water filtration.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Physics, Assam University, Silchar-788011, India.
Density functional theory has been employed to study indolo[3,2,1-]carbazole donor-based dyes, incorporating one and two units of 2,4-dimethoxybenzene auxiliary donors. Electrostatic potential analysis highlights the dye with one auxiliary donor (D2) as having the highest charge-donating capability. Structural analysis shows that auxiliary donors enhance planarity, reduce steric hindrance, and improve π-conjugation.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea. Electronic address:
The increasing contamination of water bodies with pharmaceutical pollutants, particularly acetaminophen, necessitates innovative and efficient remediation strategies. This study introduces a novel AgVO@MoO (AV@MoO) nanorod heterostructure synthesized via a hydrothermal process designed to enrich the photocatalytic degradation of antibiotic pollutant using visible light irradiation. The bandgap energy of the optimum AV@MoO-3 heterostructure is 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!