A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Slow solvation dynamics in the microheterogeneous water channels of nafion membranes. | LitMetric

Solvation dynamics in Nafion membrane is studied using the well-known solvation probe, coumarin 102 (C102). In native Nafion membrane, the fluorescence maximum of C102 occurs at 525 nm. The decays recorded at different wavelengths are superimposable. There is no time-dependent Stokes shift (TDSS) in the time scale of the experiment. This is rationalized in light of the strongly acidic environment in Nafion membrane, which causes the C102 molecules to become protonated. The protonated molecules are bound tightly to the negatively charged sulfonate groups. In Na(+)- and Me(4)N(+)-exchanged Nafion membranes, the fluorescence gets blue-shifted by 65 nm, indicating the deprotonation of the cation and formation of neutral C102 in these membranes. TDSS is observed in the picosecond-nanosecond time scale, in the cation-exchanged Nafion membranes, although the amount of Stokes' shift is rather small, as compared to that observed in organic solvents, indicating that a significant amount of the solvation is ultrafast and is missed in the present experiment. The observed solvation dynamics is bimodal with fast ( approximately 1 ns) and slow (>10 ns) components. The ultraslow component is ascribed to the quasi-static water molecules in the Nafion membrane. The difference in the extents of apparently missing ultrafast components, between Me(4)N(+)- and Na(+)-substituted membranes is rationalized by a model involving the difference in distributions of the cations in the water channel.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp907902tDOI Listing

Publication Analysis

Top Keywords

nafion membrane
16
solvation dynamics
12
nafion membranes
12
time scale
8
nafion
7
membranes
5
slow solvation
4
dynamics microheterogeneous
4
microheterogeneous water
4
water channels
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!