Abnormal vascular smooth muscle cell (VSMC) proliferation contributes to the pathogenesis of restenosis. Thus, drugs interfering with cell cycle progression in VSMC are promising candidates for an antirestenotic therapy. In this study, we pharmacologically characterize N-5-(2-aminocyclohexyl)-N-7-benzyl-3-isopropyl-1(2)H-pyrazolo[4,3-d]pyrimidine-5,7-di-amine (LGR1406), a novel derivative of the cyclin-dependent kinase (CDK) inhibitor roscovitine (ROSC), in PDGF-BB-activated VSMC. Cell proliferation was quantified measuring DNA synthesis via 5-bromo-2'-deoxyuridine incorporation. Analysis of cell cycle distribution was done by flow cytometry using propidium iodide-stained nuclei. Key regulators of the cell cycle and relevant signaling pathways were dissected by Western blot analyses. In addition, in vitro kinase assays and in silico studies regarding the pharmacokinetic profile of both compounds were performed. LGR1406 shows a stronger (IC(50) = 3.0 muM) antiproliferative activity than ROSC (IC(50) = 16.9 muM), halting VSMCs in G(0)/G(1) phase of the cell cycle, whereas ROSC does not arrest but rather delays cell cycle progression. Neither of the compounds interferes with early PDGF-BB-induced signaling pathways (p38, extracellular signal-regulated kinase 1/2, c-Jun NH(2)-terminal kinase, Akt, signal transducer and activator of transcription 3), and both inhibit CDKs, with LGR1406 exerting a slightly higher potency against CDK1/2 and 4 than ROSC. Expression of cyclins A and E as well as hyperphosphorylation of the pocket proteins retinoblastoma protein and p107 are negatively affected by both compounds, although to a different extent. In silico calculations predicted a much higher metabolic stability for LGR1406 compared with ROSC. Altogether, ROSC derivatives, such as LGR1406 seem to be promising compounds for further development in antirestenotic therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.109.060327DOI Listing

Publication Analysis

Top Keywords

cell cycle
20
vascular smooth
8
smooth muscle
8
cycle progression
8
antirestenotic therapy
8
signaling pathways
8
cell
7
rosc
6
cycle
5
lgr1406
5

Similar Publications

Organosulfur Compounds in Garlic for Gastric Cancer Treatment: Anticancer Effects, Overcoming Drug Resistance, and Mechanisms.

Recent Pat Anticancer Drug Discov

January 2025

Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, P.R. China.

Garlic has been consumed globally as a functional food and traditional medicine for various ailments. Its active organosulfur compounds (OSCs) have demonstrated significant anticancer properties, particularly against gastric cancer. However, a comprehensive review of these effects and the underlying molecular mechanisms, including their role in overcoming drug resistance, is currently lacking.

View Article and Find Full Text PDF

The study of chalcone-1,2,3-triazole hybrids for anticancer activity is quite a recent area of focus, primarily because of the increasing demand for developing new drugs to treat cancer. The chalcones and 1,2,3-triazole rings in hybrid compounds has recently emerged as a promising strategy for developing novel anticancer agents. The 1,2,3-triazole ring, known for its stability and hydrogen bonding capabilities, enhances the target binding affinity of these hybrids.

View Article and Find Full Text PDF

The stomatal phenotype is a crucial microscopic characteristic of the leaf surface, and modulating the stomata of maize leaves can enhance photosynthetic carbon assimilation and water use efficiency, thereby playing a vital role in maize yield formation. The evolving imaging and image processing technologies offer effective tools for precise analysis of stomatal phenotypes. This study employed Jingnongke 728 and its parental inbred to capture stomatal images from various leaf positions and abaxial surfaces during key reproductive stages using rapid scanning electron microscopy.

View Article and Find Full Text PDF

Phosphoproteomics profiling of sorafenib-resistant hepatocellular carcinoma patient-derived xenografts reveals potential therapeutic strategies.

iScience

January 2025

Liver Cancer Institute and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, P.R. China.

Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer with poor prognosis. Sorafenib, a first-line treatment for advanced HCC, has shown limited clinical benefits due to the onset of drug resistance. Thus, it is imperative to comprehend the mechanisms underlying sorafenib resistance and explore strategies to overcome or delay it.

View Article and Find Full Text PDF

RNA polymerase II (Pol II) regulates eukaryotic gene expression through dynamic phosphorylation of its C-terminal domain (CTD). Phosphorylation at Ser2 and Thr4 on the CTD is crucial for RNA 3' end processing and facilitating the recruitment of cleavage and termination factors. However, the transcriptional roles of most CTD-binding proteins remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!